The current recommended 6-month treatment regimen for active tuberculosis (TB) is more than 40 years old and suffers from issues with drug toxicity and high rates of patient non-adherence, which combined have contributed to the emergence of drug resistant strains. For the first time in decades, the TB drug development pipeline is filled with several promising new agents that will soon be ready for phase 2 and phase 3 trials. However, testing the efficacy of these agents in clinical trials is a significant challenge because the conventional sputum-based, growth-based, microbiologic trial endpoints have notable technical and logistical weaknesses. For this proposal, entitled TB Surrogate Markers for Assessing Response to Treatment (TB SMART Study), our objective is to develop a blood-based, quantitative, host and pathogen-specific biomarker assay using a proven, high sensitivity, multiplexed electrochemiluminescence (ECL) platform that can, in combination with clinical data, supplant 2-month sputum culture, the current dichotomous Phase 2 trial endpoint. A non-sputum, non-growth based biomarker assay applied early in the course of a trial that could replace microbiologic intermediate endpoints, while retaining or improving upon their ability to predict outcomes, could transform the pace and scope of TB drug development, and of global TB control. It may additionally have utility for monitoring treatment of paucibacillary disease as is often seen in children, extra-pulmonary TB, and HIV/TB. To achieve this goal, we have assembled an investigative team of academics with expertise in TB drug development; industry partners with expertise in both unbiased and directed approaches to biomarker discovery; exosome scientists; and statisticians with expertise in bioinformatic approaches to prediction and surrogate marker identification. We will take advantage of specimens linked to clinical, radiographic, microbiologic, and PK/PD data from well-characterized patients with culture-confirmed pulmonary TB enrolled in four studies: three CDC-funded, TB Trials Consortium randomized, clinical trials, and one FDA-funded repository linked to Phase 3 TB trials. We will use available clinical trial data and sample sets to: 1) Identify blood-based, host and TB-specific biomarkers of treatment response using unbiased, targeted and exosome-enriched approaches 2) develop and qualify multi-parameter classifiers for predicting recognized microbiologic measures of bactericidal and sterilizing activity, using the host and pathogen biomarkers identified, and 3) develop, qualify and conduct validation studies of a finalist biomarker panel built on a multiplexed ECL platform. Upon completion of comprehensive qualification and validation studies proposed, we will be ready to release the multiplexed, ECL biomarker panel assay as Qualified Kits to be used and evaluated in prospective Phase 2 and 3 trials.

Public Health Relevance

For the first time in nearly half a century, a number of novel and newer agents for tuberculosis (TB) treatment are in development that may lead to shorter, safer, and more effective regimens. The objective of this R01 application is to develop a blood-based, highly sensitive and pathogen-specific, biomarker assay that can be used to monitor treatment response in TB patients enrolled in clinical trials assessing these new regimens. Our intention is for the assay to be used as a tool to rapidly assess efficacy of new drugs and new regimens, and thus significantly speed up drug development for TB.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI104589-03
Application #
8793680
Study Section
Special Emphasis Panel (ZAI1-LG-M (J4))
Program Officer
Lacourciere, Karen A
Project Start
2013-02-12
Project End
2018-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
3
Fiscal Year
2015
Total Cost
$1,154,896
Indirect Cost
$171,970
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kedia, Komal; Wendler, Jason P; Baker, Erin S et al. (2018) Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis. Tuberculosis (Edinb) 112:52-61
Sigal, George B; Pinter, Abraham; Lowary, Todd L et al. (2018) A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO's Performance Target for Tuberculosis Diagnosis. J Clin Microbiol 56:
Mehaffy, Carolina; Dobos, Karen M; Nahid, Payam et al. (2017) Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance Mycobacterium tuberculosis peptides in human serum. Clin Proteomics 14:21
Sigal, G B; Segal, M R; Mathew, A et al. (2017) Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial. EBioMedicine 25:112-121
Blount, Robert J; Pascopella, Lisa; Catanzaro, Donald G et al. (2017) Traffic-Related Air Pollution and All-Cause Mortality during Tuberculosis Treatment in California. Environ Health Perspect 125:097026
Feng, J-Y; Jarlsberg, L G; Salcedo, K et al. (2017) Clinical and bacteriological characteristics associated with clustering of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 21:766-773
Feng, J-Y; Jarlsberg, L G; Rose, J et al. (2017) Impact of Euro-American sublineages of Mycobacterium tuberculosis on new infections among named contacts. Int J Tuberc Lung Dis 21:509-516
Jayakumar, A; Savic, R M; Everett, C K et al. (2016) Xpert MTB/RIF Assay Shows Faster Clearance of Mycobacterium tuberculosis DNA with Higher Levels of Rifapentine Exposure. J Clin Microbiol 54:3028-3033
Blount, Robert J; Tran, Minh-Chi; Everett, Charles K et al. (2016) Tuberculosis progression rates in U.S. Immigrants following screening with interferon-gamma release assays. BMC Public Health 16:875
Walter, Nicholas D; de Jong, Bouke C; Garcia, Benjamin J et al. (2016) Adaptation of Mycobacterium tuberculosis to Impaired Host Immunity in HIV-Infected Patients. J Infect Dis 214:1205-11

Showing the most recent 10 out of 15 publications