We have discovered the first nucleoside-analog inhibitor (NAI) that selectively inhibits bacterial RNA polymerase (RNAP): pseudouridimycin (PUM). PUM is produced by Streptomyces sp. NAI38640 and comprises a guanidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 5'-amino-pseudoridine. PUM inhibits bacterial RNAP--but not mammalian RNAP--in vitro, inhibits bacterial growth in culture, and potently clears infection in a mouse model of Group A Streptococcus infection (ED50 = 10 mg/kg). The compound exhibits antibacterial activity against a broad spectrum of drug-sensitive and drug-resistant bacterial pathogens, including drug-sensitive, penicillin-resistant, macrolide-resistant, and multi-drug-resistant Streptococci, drug-sensitive, methicillin-resistant, and multi-drug-resistant Staphylococci, Neisseria sp., Haemophilus sp., and Moraxella sp. The compound exhibits no cross-resistance with rifampin, the RNAP inhibitor in current use in broad-spectrum antibacterial therapy, and exhibits a spontaneous resistance frequency <1/10 that of rifampin. The compound exhibits additive antibacterial activity upon co-administration with rifampin. We have defined the binding site on RNAP for PUM (the """"""""i+1"""""""" NTP insertion site) and the mechanism of inhibition of RNAP by PUM (competition with UTP for occupancy of the """"""""i+1"""""""" NTP insertion site). The binding site and mechanism have no overlap with the binding site and mechanism of the RNAP inhibitor rifampin, consistent with the absence of cross-resistance with rifampin. We have determined a crystal structure of RNAP in complex with PUM. The crystal structure suggests specific alterations to the structure of PUM that are expected to increase potency against a broad spectrum of bacterial RNAP, exploiting structural features that are invariant in bacterial RNAP. We have developed procedures for semi-synthesis and total synthesis of PUM analogs. We propose to leverage the mechanistic information, structural information, and synthetic procedures obtained in preliminary work in order to design, synthesize, and evaluate PUM analogs having increased efficacy against a broad spectrum of drug-resistant and drug-resistant bacterial pathogens. Analogs will be evaluated for inhibition of RNAP in vitro, antibacterial activity in culture, cytotoxicity against mammalian cells in culture, resistance properties in culture, and physical properties. Analogs of high promise will be evaluated for antibacterial efficacy in small-animal models of infection, and analogs of highest promise will be evaluated for bioavailability, pharmacokinetics, safety, and ability to scale synthesis.

Public Health Relevance

Drug-resistant bacterial infections are a major and growing threat. The proposed work is expected to provide new drug candidates effective against a broad spectrum of drug-resistant bacterial pathogens, including both public-health-relevant bacterial pathogens and biodefense-relevant bacterial pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI104660-02
Application #
8603843
Study Section
Special Emphasis Panel (ZAI1-FDS-M (J2))
Program Officer
Xu, Zuoyu
Project Start
2013-01-15
Project End
2017-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
2
Fiscal Year
2014
Total Cost
$919,551
Indirect Cost
$194,837
Name
Rutgers University
Department
Type
Organized Research Units
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Lin, Wei; Das, Kalyan; Degen, David et al. (2018) Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 70:60-71.e15
Sosio, Margherita; Gaspari, Eleonora; Iorio, Marianna et al. (2018) Analysis of the Pseudouridimycin Biosynthetic Pathway Provides Insights into the Formation of C-nucleoside Antibiotics. Cell Chem Biol 25:540-549.e4
Maffioli, Sonia I; Sosio, Margherita; Ebright, Richard H et al. (2018) Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. J Ind Microbiol Biotechnol :
Maffioli, Sonia I; Zhang, Yu; Degen, David et al. (2017) Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase. Cell 169:1240-1248.e23
Zhang, Yu; Degen, David; Ho, Mary X et al. (2014) GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. Elife 3:e02450
Degen, David; Feng, Yu; Zhang, Yu et al. (2014) Transcription inhibition by the depsipeptide antibiotic salinamide A. Elife 3:e02451