Malaria is a devastating infectious disease that kills almost a million people each year, mostly pregnant women and young children in Africa. In 2010 there were 200 million people infected with malaria, and 3.3 billion people were at risk of infection. This is half of the world population. Malaria is transmitted by the bite of an infected Anopheles mosquito. In the absence of an effective malaria vaccine, chemical control of the mosquito vector through the use of insecticides remains the best weapon to fight malaria transmission. Insecticide resistance in mosquitoes is however on the rise, and novel methods to control mosquito populations are urgently needed. Anopheles gambiae are the most effective malaria vectors, in part due to a high reproductive rate that maintains large population densities. One of the most promising novel opportunities for vector control is reducing the reproductive output of these mosquitoes by introducing genetic sterility in natural populations. Using molecular, genetic and genomics tools, the """"""""Targeting the reproductive interactome of the malaria vector Anopheles gambiae"""""""" project will expand our fundamental understanding of the reproductive biology and physiology of An. gambiae. The project will identify genes and pathways regulating fertility and post-copulatory processes that shape the mosquito reproductive ability. The knowledge generated in this project will contribute to new methods of mosquito control, and eventually to a healthier populace in regions now devastated by malaria.

Public Health Relevance

Mosquito control is an essential component of strategies aimed at stopping the spread of malaria. We are studying key reproductive processes in the malaria vector Anopheles gambiae to generate a deeper knowledge of factors and pathways regulating fertility in these mosquitoes. This knowledge will aid the design and implementation of novel mosquito control strategies to reduce the fertility of natural malaria-transmitting populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI104956-02
Application #
8663723
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
2013-05-20
Project End
2018-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$683,408
Indirect Cost
$260,057
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Thailayil, Janis; Gabrieli, Paolo; Caputo, Beniamino et al. (2018) Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 8:6594
Shaw-Saliba, Kathryn; Clarke, David; Santos, Jorge M et al. (2016) Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. Int J Parasitol 46:679-83
Childs, Lauren M; Cai, Francisco Y; Kakani, Evdoxia G et al. (2016) Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathog 12:e1006060
Mitchell, Sara N; Kakani, Evdoxia G; South, Adam et al. (2015) Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347:985-8
Fontaine, Michael C; Pease, James B; Steele, Aaron et al. (2015) Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347:1258524
Shaw, W Robert; Attardo, Geoffrey M; Aksoy, Serap et al. (2015) A comparative analysis of reproductive biology of insect vectors of human disease. Curr Opin Insect Sci 10:142-148
Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R et al. (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:1258522
Gabrieli, Paolo; Kakani, Evdoxia G; Mitchell, Sara N et al. (2014) Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 111:16353-8
Baldini, Francesco; Segata, Nicola; Pompon, Julien et al. (2014) Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5:3985
Shaw, W Robert; Teodori, Eleonora; Mitchell, Sara N et al. (2014) Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in Anopheles gambiae. Proc Natl Acad Sci U S A 111:5854-9

Showing the most recent 10 out of 11 publications