Most humans are infected with influenza viruses by the time they reach 3 years of age. Our past studies suggest that early childhood influenza infections can leave lifelong immunological `imprints'. During the first funding period (4 years) of this grant, we found that human Ab responses against seasonal influenza viruses are typically focused on epitopes that are conserved between contemporary viral strains and viral strains that circulated during each individual donor's childhood. We found that immune responses generated against contemporary influenza strains are dominated by memory B cells that recognize conserved epitopes present in past viral strains. Our studies have examined how viral infections with one subtype of influenza virus (i.e. H1N1) influence immune responses against an antigenically distinct version of that same subtype (i.e. H1N1). Although different influenza virus subtypes have very different antigenic properties, there are epitopes that are conserved among these viruses. H1N1, H2N2, and H3N2 viruses have circulated at different times in humans over the past 100 years and an individual's birth year largely predicts the influenza virus subtype that they were initially infected with in childhood. It is important to elucidate how viral infections with one influenza subtype (i.e. H1N1) influence immune responses against a completely different influenza subtype (i.e. H3N2) since multiple influenza virus subtypes currently co-circulate in humans. Further, epidemiological studies suggest that human susceptibility to pandemic H5N1 and H7N9 viruses is influenced by childhood infections with different subtypes of seasonal influenza viruses. We hypothesize that early childhood seasonal influenza virus infections leave long-lived immunological imprints that bias the immune system to preferentially respond efficiently to more closely related influenza subtypes and poorly to more distant influenza subtypes. In this proposal we will use a ferret model to determine how initial seasonal influenza infections shape the specificity and neutralization efficiency of Abs elicited against distinct seasonal and pandemic influenza virus subtypes. We will then examine sera samples collected for a pediatric cohort study to determine how initial childhood H1N1 versus H3N2 infections affect the development of Ab responses against infections with homologous and heterologous influenza virus subtypes. Finally, we will use a ferret model to determine how different influenza pre-exposures shape the specificity and neutralization efficiency of Abs elicited by a leading `universal' influenza vaccine candidate. Collectively, these studies will determine (1) if infections with one influenza virus subtype influence the specificity of Abs elicited against a second influenza virus subtype, (2) the specificity and functionality of Abs elicited in children with different influenza virus exposure histories and (3) how prior influenza exposures influence the effectiveness of a new `universal' influenza vaccine.

Public Health Relevance

The immune system preferentially mounts immune responses to old influenza strains, as opposed to new immune responses that target emerging viral strains. The goal of this application is to determine how previous influenza infections influence the development of new immune responses elicited by distinct influenza virus subtypes and new `universal' influenza vaccine antigens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI108686-08
Application #
9977954
Study Section
Immunity and Host Defense (IHD)
Program Officer
Lane, Mary Chelsea
Project Start
2014-08-15
Project End
2023-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Cobey, Sarah; Gouma, Sigrid; Parkhouse, Kaela et al. (2018) Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012-2013. Clin Infect Dis 67:327-333
Pardi, Norbert; Parkhouse, Kaela; Kirkpatrick, Ericka et al. (2018) Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 9:3361
Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V et al. (2018) Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection. Cell Rep 22:411-426
Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S et al. (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 215:1571-1588
Garretson, Tyler A; Petrie, Joshua G; Martin, Emily T et al. (2018) Identification of human vaccinees that possess antibodies targeting the egg-adapted hemagglutinin receptor binding site of an H1N1 influenza vaccine strain. Vaccine 36:4095-4101
Herati, Ramin Sedaghat; Muselman, Alexander; Vella, Laura et al. (2017) Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci Immunol 2:
Wu, Nicholas C; Zost, Seth J; Thompson, Andrew J et al. (2017) A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog 13:e1006682
Doud, Michael B; Hensley, Scott E; Bloom, Jesse D (2017) Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 13:e1006271
Cobey, Sarah; Hensley, Scott E (2017) Immune history and influenza virus susceptibility. Curr Opin Virol 22:105-111
Zost, Seth J; Parkhouse, Kaela; Gumina, Megan E et al. (2017) Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A 114:12578-12583

Showing the most recent 10 out of 20 publications