CD103+ dendritic cells (CD103+ DCs) are a critical immune subset that resides in nonlymphoid organs in the mouse such as skin, liver and lung. This DC population migrates to lymph nodes to induce adaptive immune responses and is notably proficient in cross-presentation of exogenous antigen to cytotoxic CD8+ T cells. Because of their tissue residence and function, CD103+ DCs are perfectly situated to regulate immune responses to tumors. However, little is understood about their role in cancer. CD103+ DCs are homologous to human tissue CD141+ DCs and DCs generated in GM-CSF for cancer therapy, and provide a genetically tractable system to understand these important DC populations. Recently, our lab and others found CD103+ DCs have a unique developmental pathway dependent on the cytokine GM-CSF, the signal transducer and activator of transcription STAT5 and the transcriptional regulator Id2. This signaling pathway correlates with enhanced DC-mediated tumor immunity. By contrast, we found that the tumor-associated cytokine IL-6 represses Id2 expression in DCs via STAT3 signaling, rendering reduced DC-mediated tumor immunity. The cellular and molecular mechanisms by which STAT5 and STAT3 control CD103+ DC functional responses remain unclear. These gaps in knowledge are important to address to provide better use of DCs in immunotherapy. Based on our data, we hypothesize that GM-CSF-STAT5 and IL-6-STAT3 signaling have opposite roles in regulating DC anti-tumor activity via their control of Id2 expression in DCs. We will test this hypothesis wit 3 project aims.
In Aim 1, we will delineate mechanisms by which tissue- resident DCs stimulate anti-tumor immunity by investigating the roles for STAT5 and its target gene Id2 in CD103+ DCs. We will study whether and how STAT5 and Id2 control CD103+ DC maturation, antigen presentation, T lymphocyte stimulation, pre-DC accrual in nonlymphoid tissue, and DC-mediated anti-tumor activity.
In Aim 2, we will elucidate DC-intrinsic signaling mechanisms that regulate DC function in melanoma tumors. We will investigate roles for STAT3 in DCs in Id2 downregulation, immune responses to melanoma and melanoma combination immunotherapy.
In Aim 3, we will examine mechanisms by which STAT5 and STAT3 regulate Id2 expression in DC development. We will evaluate whether and how STAT5 and STAT3 control chromatin modifications, co-factor recruitment and RNA polymerase II association at the Id2 promoter in vivo. We anticipate this project to reveal cellular and molecular mechanisms by which CD103+ DC anti-tumor activity is regulated, paving the way for rational investigation into pathways controlling related human DC populations. This information could ultimately provide new opportunities to manipulate DCs in cellular therapy, cancer and/or immune disease.

Public Health Relevance

The goal of this project is to discover the molecular pathways that control anti-tumor activities of an important antigen-presenting immune cell type that resides in numerous body tissues such as skin, lung and liver. This immune population is responsible for the detection of foreign particles (antigens) from cancer cells or invading microbes, and eliciting an immune response to eradicate the tumor or pathogen. By understanding the molecular events that control this antigen-presenting population, we aim to learn how to better manipulate these cells to treat immune disease and cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI109294-04
Application #
9392518
Study Section
Immunity and Host Defense (IHD)
Program Officer
Jiang, Chao
Project Start
2015-07-01
Project End
2019-12-31
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Microbiology/Immun/Virology
Type
Hospitals
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Chrisikos, Taylor T; Zhou, Yifan; Slone, Natalie et al. (2018) Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol :
Zhang, Huiyuan; Li, Haiyan S; Hillmer, Emily J et al. (2018) Genetic rescue of lineage-balanced blood cell production reveals a crucial role for STAT3 antiinflammatory activity in hematopoiesis. Proc Natl Acad Sci U S A 115:E2311-E2319
Mao, Fei; Tu, Qiang; Wang, Li et al. (2017) Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 8:38008-38021
Kadmon, Claudine S; Landers, Cameron T; Li, Haiyan S et al. (2017) MicroRNA-22 controls interferon alpha production and erythroid maturation in response to infectious stress in mice. Exp Hematol 56:7-15
Li, Haiyan S; Liu, Chengwen; Xiao, Yichuan et al. (2016) Bypassing STAT3-mediated inhibition of the transcriptional regulator ID2 improves the antitumor efficacy of dendritic cells. Sci Signal 9:ra94
Hillmer, Emily J; Zhang, Huiyuan; Li, Haiyan S et al. (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev 31:1-15