Stochastic fluctuations in gene expression are unavoidable at the single-cell level and affect fate decisions from HIV to embryonic development. Yet, there remain fundamental gaps in our understanding of the mechanisms generating and regulating expression fluctuations in mammalian cells. Addressing this gap in knowledge is critical to therapeutic development in systems where fluctuations and heterogeneity present treatment barriers, such as in HIV, stem-cell therapeutics, and cancer. Our long-term goal is to develop therapeutics that target mechanisms of cellular heterogeneity to overcome barriers to precise control of cell fate. During the past 5 years, our work established mechanistic roles for noise and heterogeneity, demonstrating that noise is a feature, rather than a bug, of biological systems that can be modulated for therapeutic effect. Specifically, we: (i) elucidated a viral transcriptional-feedback circuit that harnesses noise to regulate HIV latency, (ii) found this circuit to be optimized by evolution to function as a viral bet-hedging circuit, (iii) made contributions to cell biology showing that transcriptional fluctuations are, in general, amplified by nuclear export and translation, and, (iv) we discovered a novel post-transcriptional feedback architecture that efficiently suppresses noise to stabilize fate commitment. Most excitingly, and most relevant to this application, we (v) discovered noise- enhancer molecules that appear to substantially improve viral reactivation from latency and have been used by other labs to increase noise in diverse systems (e.g., circadian rhythm). The objective of this renewal is to identify molecular mechanisms of noise modulation in mammalian cell-fate circuits to enable therapeutic control of noise. Based on our findings and extensive preliminary evidence in embryonic stem cells (ESCs), our central hypothesis is that generalized `core' cellular mechanisms exist to tune expression noise and that these mechanisms can be pharmacologically perturbed.
Our specific aims build off our unique tool of noise-enhancer molecules and will:
(Aim 1) map the molecular mechanistic pathways of noise enhancer molecules to develop a mathematical model predictive of transcriptome-wide noise in mammalian cells;
(Aim 2) map the molecular mechanisms of noise-suppressor molecules;
and (Aim 3) to quantify relative contributions of stochastic vs. deterministic mechanisms underlying HIV latency in vivo and safety & efficacy of noise-modulating molecules in vivo. The proposed research has broad significance as it will determine core molecular mechanisms regulating expression in disparate fate-specification models, reveal genetic targets of noise enhancement and suppression that can lead to the development of new broad-spectrum noise modulators, and propel clinical translation of noise-modulating molecules. Ultimately, the knowledge gained will guide new therapeutic approaches to overcome barriers to precise cell-fate control across diverse mammalian systems.

Public Health Relevance

Stochastic fluctuations in gene expression impact cell-fate specification decisions from embryogenesis to viral infection creating barriers for effective treatment interventions. Based on therapeutic precedents in neuroscience that use fluctuations to improve sensorimotor function, this project will identify centralized molecular and cellular mechanisms of noise modulation, that can be therapeutically targeted, in embryonic stem cells (ESCs). The proposed research will lead to development of new broad-spectrum noise modulators, and propel clinical translation of noise-modulating molecules to guide new therapeutic approaches that overcome barriers to precise cell-fate control in diverse mammalian systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI109593-06A1
Application #
10211509
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Lawrence, Diane M
Project Start
2014-06-01
Project End
2026-02-28
Budget Start
2021-03-02
Budget End
2022-02-28
Support Year
6
Fiscal Year
2021
Total Cost
Indirect Cost
Name
J. David Gladstone Institutes
Department
Type
DUNS #
099992430
City
San Francisco
State
CA
Country
United States
Zip Code
94158
Hansen, Maike M K; Desai, Ravi V; Simpson, Michael L et al. (2018) Cytoplasmic Amplification of Transcriptional Noise Generates Substantial Cell-to-Cell Variability. Cell Syst 7:384-397.e6
Hansen, Maike M K; Wen, Winnie Y; Ingerman, Elena et al. (2018) A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization. Cell 173:1609-1621.e15
Razooky, Brandon S; Cao, Youfang; Hansen, Maike M K et al. (2017) Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean. PLoS Biol 15:e2000841
Pai, Anand; Weinberger, Leor S (2017) Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets. Annu Rev Virol 4:469-490
Aull, Katherine H; Tanner, Elizabeth J; Thomson, Matthew et al. (2017) Transient Thresholding: A Mechanism Enabling Noncooperative Transcriptional Circuitry to Form a Switch. Biophys J 112:2428-2438
Dar, Roy D; Shaffer, Sydney M; Singh, Abhyudai et al. (2016) Transcriptional Bursting Explains the Noise-Versus-Mean Relationship in mRNA and Protein Levels. PLoS One 11:e0158298
Weinberger, Leor S (2015) A minimal fate-selection switch. Curr Opin Cell Biol 37:111-8
Razooky, Brandon S; Pai, Anand; Aull, Katherine et al. (2015) A hardwired HIV latency program. Cell 160:990-1001
Rouzine, Igor M; Razooky, Brandon S; Weinberger, Leor S (2014) Stochastic variability in HIV affects viral eradication. Proc Natl Acad Sci U S A 111:13251-2