The aim of this proposal is to identify the immunological mechanisms that provide effective protection against divergent strains of influenza A viruses. Influenza A viruses pose a serious threat to public health and the emergence of H5N1 and H7N9 avian subtypes presents a considerable risk for a deadly pandemic. Vaccination is the most effective strategy for controlling influenza infections, however current vaccines only protect against a small subset of strains. A universal vaccine that induces immunity to proteins conserved across all influenza A viruses would protect against newly emerging and pandemic strains. However, candidate universal vaccines do not induce effective immune responses to conserved influenza A proteins. Thus, to design a successful universal vaccine, we must first understand how to efficiently elicit the components of the immune response that provide immunity to influenza viruses of distinct subtypes. We recently identified an innovative means to enhance immunity against multiple strains of influenza by treating mice with the immunosuppressant, rapamycin, during a primary H3N2 infection. Rapamycin treatment protected mice from subsequent lethal infections with H5N1, H7N9, and H1N1 strains. We will use this system as a tool to identify the components of the immune response that contribute to this remarkable protection against distinct strains of influenza. We hypothesize that the optimal immune response will consist of augmented cross-reactive antibodies in conjunction with an optimized CD8+ T cell response. To test this hypothesis, we propose the following specific aims: 1. Investigate the mechanisms of cross-reactive antibody-mediated protection. Rapamycin enhances generation of cross-reactive antibodies, however the mechanisms of antibody protection and the identity of the viral epitopes they bind are not known. Thus, we will examine how these cross-reactive antibodies protect and identify which antibody specificities correlate with improved protection. 2. Examine molecular and cellular mechanisms of germinal center formation that favor cross-reactive antibodies. While cross-reactive antibodies are present in humans following influenza vaccination or infection, these antibodies are not dominant. Determining how rapamycin alters germinal center formation to increase cross-reactive antibodies will lend insight into methods to enhance the generation of cross-reactive antibodies in humans. 3. Determine the contributions of CD8+ T cells and cross-reactive antibodies in a model of intranasal vaccination. Our preliminary data describe a novel model in which the enhanced immunity to distinct influenza strains is dependent on CD8+ T cells. We will use this model to investigate if cross-reactive antibodies and CD8+ T cells act synergistically to promote optimal heterosubtypic immunity. These experiments will lend valuable insight into the components of the immune response that are critical for protection from divergent influenza infections, which will be essential for creating universal vaccines, and save millions of lives in a deadly pandemic.

Public Health Relevance

Influenza A viruses pose a serious threat to public health and the emergence of H5N1 and H7N9 avian strains presents a considerable risk for a deadly pandemic. While current vaccines are effective against seasonal strains, they will not protect against newly emerging strains. A 'universal' vaccine that induces immunity to proteins conserved in all influenza A viruses would protect against newly emerging strains, including strains with potential to create a deadly pandemic. Our proposed experiments will identify the components of the immune response that are critical for immunity to divergent strains of influenza, and this information will be essential for creating universal influenza vaccines, which could save millions of lives in a deadly pandemic.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI114728-05
Application #
9653952
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lane, Mary Chelsea
Project Start
2015-03-07
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2021-02-28
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Keating, Rachael; McGargill, Maureen Ann (2016) mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front Immunol 7:180