The strength of an immune response against a transplanted organ, termed the alloresponse, depends on the extent of genetic differences between the donor and the recipient and their recognition by the recipient?s immune system. Our studies from the previous funding cycle have shown that the microbiota, the collection of microbes that colonize the body and differ between individuals, is an additional novel factor that can causally modulate the intensity and kinetics of the alloresponse to a transplanted organ. Unlike donor and host genetics, the microbiota can be manipulated therapeutically, thus providing possible new interventions to protect the graft and help reduce the need for immunosuppressive drugs that can cause significant side effects. We initially considered the body?s microbiota as a whole and demonstrated that a reduction in microbial diversity induced by broad-spectrum antibiotic (Abx) pre-treatment, or an absence of microbiota using germ-free (GF) mice, both improved minor mismatched skin graft survival. Fecal microbiome transfer (FMT) from control, but not Abx-pre-treated mice, into GF mice was sufficient to accelerate skin graft rejection. This demonstrated both the causality of the microbiota on affecting graft outcome, and the divergent effects of distinct fecal microbial communities. Abx pre-treatment also delayed rejection of fully mismatched skin grafts, minor mismatched lung grafts, and MHC class II-mismatched heart grafts, indicating that whole-body microbiota affects the outcome of both colonized and sterile organs. We further showed that that some microbial communities could be dominantly protective of rejection. This protection was associated with fecal presence of bacteria of the genus Alistipes. In addition, the half-life of small bowel, lung and skin transplants is much shorter than that of heart and kidney grafts, supporting the hypothesis that the commensals in the graft may also be able to influence alloimmunity. Our recent preliminary experiments demonstrate that colonization of donor skin with the single commensal Staphylococcus epidermidis (S. epi), in the absence of intestinal colonization of the host, can be sufficient to accelerate skin graft rejection. This result clearly demonstrates that microbiota within the allograft also impacts graft outcome. Notably, the mechanism by which skin S. epi accelerates skin graft rejection appears different from how whole-body microbiota in SPF mice or FMT into GF mice accelerates skin graft rejection. We hypothesize a novel paradigm that the recipient gut microbiota affects immune responses in the whole animal by systemically modulating DCs up or down, whereas the microbiota in the donor graft locally affects the effector phase of the alloresponse upon migration of recipient alloreative T cells into the graft. Using a combination of TCR transgenic T cells and p:MHC multimers to track anti-commensal and anti-donor immune responses in parallel, as well as select bacterial colonization of distinct tissues in gnotobiotic mice, we will: 1. Investigate the mechanisms by which gut-only microbes can impact skin graft rejection distally; 2. Define the mechanisms by which skin-only commensals locally accelerate skin graft rejection.

Public Health Relevance

The strength of an immune response against a transplanted organ depends on the extent of genetic disparities between the donor and the host. We have shown that the microbiota, the community of microbes that colonize the body, is an additional novel factor that can modulate this response. We will investigate both how microbial location in the body differentially impacts transplant outcome, as well as delineate the mechanism by which select taxa either promote or delay transplant rejection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI115716-07
Application #
10076758
Study Section
Transplantation, Tolerance, and Tumor Immunology Study Section (TTT)
Program Officer
Kehn, Patricia J
Project Start
2014-11-03
Project End
2024-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
7
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
McIntosh, Christine M; Chen, Luqiu; Shaiber, Alon et al. (2018) Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6:96
Riella, Leonardo V; Bagley, Jessamyn; Iacomini, John et al. (2017) Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 127:2482-2491
Molinero, Luciana L; Yin, Dengping; Lei, Yuk Man et al. (2016) High-Fat Diet-Induced Obesity Enhances Allograft Rejection. Transplantation 100:1015-21
Lei, Yuk Man; Chen, Luqiu; Wang, Ying et al. (2016) The composition of the microbiota modulates allograft rejection. J Clin Invest 126:2736-44
Alegre, Maria-Luisa; Lakkis, Fadi G; Morelli, Adrian E (2016) Antigen Presentation in Transplantation. Trends Immunol 37:831-843
Theriault, Betty; Wang, Ying; Chen, Luqiu et al. (2015) Long-term Maintenance of Sterility Following Skin Transplantation in Germ-free Mice. Transplant Direct 1:
Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa (2015) The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol 39:9-19
Bartman, Caroline; Chong, Anita S; Alegre, Maria-Luisa (2015) The influence of the microbiota on the immune response to transplantation. Curr Opin Organ Transplant 20:1-7
Sivan, Ayelet; Corrales, Leticia; Hubert, Nathaniel et al. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084-9
Alegre, M-L; Mannon, R B; Mannon, P J (2014) The microbiota, the immune system and the allograft. Am J Transplant 14:1236-48