Psoriasis is a chronic inflammatory, hyperproliferative disease of the skin, whose complex pathophysiology is determined by both environmental factors and genetic susceptibilities. Abnormalities in keratinocyte function, adaptive and innate immune cells, and cytokine production have been implicated in psoriasis. Human genetic studies have strongly linked single nucleotide polymorphisms (SNPs) of the gene TNFAIP3, also known as A20, to psoriasis susceptibility. Subsequent GWAS have replicated these associations. TNFAIP3 SNPs have also been linked to reduced A20 expression and therapeutic responses in patients. Our recent studies indicate that A20 restricts innate immune cells by regulating NF-?B signals. We have also found that mice expressing reduced amounts of A20 are susceptible to imiquimod-induced psoriasis. Hence, our central hypothesis is that reduced A20 expression leads to perturbed innate immune, cytokine, and T cell functions and increased susceptibility to psoriasis. To test this hypothesis, we propose to first determine the cellular mechanisms by which A20 regulates psoriasis susceptibility using mice lacking or reduced A20 expression in dendritic cells, T cells, and epithelial cells. As we have found that A20 is a novel ubiquitin binding and ubiquitin modifying enzyme that interacts with other ubiquitin binding proteins, we will use novel A20 knock-in mice bearing strategic point mutations as well as mice lacking key A20 binding partners to test the physiological functions of these biochemical activities. These experiments should provide comprehensive and mechanistic insights into how A20 prevents psoriasis, and provide new areas for therapeutic discovery.

Public Health Relevance

Psoriasis is the most common autoimmune disease, afflicting ~7.5 million Americans. Human genetic and clinical studies strongly link A20 to psoriasis susceptibility and clinical response. A20, also known as TNFAIP3, is a novel regulatory protein that restricts activation of immune cells. Hence, our studies investigating A20 in psoriasis models should provide compelling insights into the pathophysiology and potential cures for psoriasis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI117908-01A1
Application #
8888622
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Rothermel, Annette L
Project Start
2015-02-01
Project End
2020-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
1
Fiscal Year
2015
Total Cost
$395,730
Indirect Cost
$145,730
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Aki, Anri; Nagasaki, Miyuki; Malynn, Barbara Ann et al. (2017) Hypomorphic A20 expression confers susceptibility to psoriasis. PLoS One 12:e0180481
Kattah, Michael G; Malynn, Barbara A; Ma, Averil (2017) Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome. J Mol Biol 429:3471-3485
Onizawa, Michio; Oshima, Shigeru; Schulze-Topphoff, Ulf et al. (2015) Erratum: The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 16:785
Ma, Averil (2015) From trash collectors to guardians of cell signaling and immune homeostasis. Immunol Rev 266:1-5
Onizawa, Michio; Oshima, Shigeru; Schulze-Topphoff, Ulf et al. (2015) The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 16:618-27