Despite the remarkable progress in drug development over the past 20 years, antiretroviral treatment success is not universal. The most frequent cause of treatment failure in both therapeutic and prophylactic settings continues to be challenges associated with drug adherence. Although many patients can manage daily adherence for substantial periods of time, treatment fatigue as well as special difficulties exist for vulnerable patient populations including those challenged by substance abuse, mental illness, prolonged periods away from home and stigma within their communities. All too often treatment failure ensues. This has led to an increasing interest in the development of antiretroviral chemotherapeutic agents that can be given at prolonged dosing intervals. Several novel compounds and compounding approaches have emerged that suggest this goal is highly attainable. In this application we wish to develop an effective approach to deliver the globally used nucleotide, tenofovir, to the list of agents that can be administered at monthly intervals. We have demonstrated that ester linkage of an alkoxyalkyl side chain to the parent molecule greatly enhances cellular uptake and that we can modify the rate of intracellular release by the addition of a second promoiety at the remaining phosphonate oxygen. The combined effect of these modifications results in rapid cellular uptake and sustained ?timed-release? delivery of tenofovir diphosphate to the intracellular compartment. One lead compound, the octadecyloxyethyl benzyl diester of tenofovir (ODE-Bn-TFV), has single nanomolar anti-HIV activity and a selectivity index of >3000. Tenofovir diphosphate was slowly liberated in the intracellular compartment where it maintained a half-life of more than a week. We propose to utilize this approach to develop additional compounds of even greater potency and intracellular half-life. We will compound our novel time-release molecules in nanoparticles that will slowly release these molecules into the systemic circulation from the site of intramuscular injection. We believe that by using nanotechnology to first modulate release of prodrug into the systemic circulation and then using a synthetic chemical approach to enhance cellular uptake and to slow intracellular decay that we can deliver potent antiviral activity to sites of viral replication for a month following intramuscular injection.

Public Health Relevance

In this application we propose to utilize novel synthetic chemistry to develop a series of aliphatic tenofovir prodrugs designed to greatly enhance cellular uptake and to provide prolonged intracellular exposure to molecules with potent antiviral activity. We will further extend systemic exposure to these compounds by delivering them in slow-release nanoparticle formulations. We believe that with this ?dual-modulation? of drug presentation we will provide systemic exposure to therapeutic concentrations of highly active antiviral compounds for periods of at least four weeks following intramuscular injection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI131424-03
Application #
9635617
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Protopopova, Marina
Project Start
2017-02-21
Project End
2022-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093