The HIV and HSV-2 syndemic is well recognized, but the biological mechanisms that contribute are not understood. The recent recognition that HSV-2 is characterized by a frequent state of subclinical shedding suggests that the virus might contribute to persistent immune activation and prompted us to examine the impact of HSV-2 on peripheral blood T cells and on HIV reservoirs. Taking advantage of our biorepository of peripheral blood mononuclear cells (PBMC) from well-characterized HIV+ women on antiretroviral therapy who were or were not HSV-2 seropositive (HIV+/HSV-2+ vs. HIV+/HSV-2-), we found a significant difference in the phenotype of CD4+ (but not CD8+) T cells in HIV+/HSV-2+ compared to HIV+/HSV-2- women. These changes included an increase in the frequency of activated cells, but a paradoxical decrease in the expression of IL-32, an intracellular cytokine presumed to be associated with inflammation. Moreover, when CD4+ T cells isolated from virally suppressed HIV+/HSV-2+ women were stimulated with latency reversal agents, the addition of recombinant IL-32 to the cultures blocked HIV reactivation. These observations suggest that IL-32 plays a pivotal role in controlling HIV reactivation and suggest a new paradigm underlying the HIV-HSV-2 syndemic. We hypothesize that HSV-2 triggers changes in local (at the site of HSV-2 genital skin outbreaks) and peripheral blood CD4+ T cells including a reduction in intracellular IL-32 levels that promote HIV reactivation. Conversely, high levels of IL-32 contribute to the maintenance of HIV reservoirs suggesting that IL-32 blockade may synergize with strategies to reactivate HIV as part of a ?shock and kill? approach to cure. To test these hypotheses, we will analyze serial samples of PBMC from HIV infected women before and after HSV-2 acquisition from two unique cohorts: women enrolled in Microbicides Trial Network (MTN)-015, a longitudinal study of African women who seroconverted to HIV while participating in pre-exposure prophylaxis trials, and U.S. women with established HIV infection enrolled in the Bronx Women's Interagency Study (WIHS). We will also compare PBMC in HIV-infected men who are or are not coninfected with HSV-2. We will phenotype immune cell subpopulations to define the changes that occur in association with HSV-2 acquisition and the impact of these changes on plasma viral loads and HIV reservoirs. We will prepare CD4+ T cell libraries of IL- 32lo cells and determine whether these subpopulations are enriched in HSV-2 and/or HIV reactive cells and whether decreased IL-32 interferes with immune functions. We will also take advantage of our repository of genital skin biopsies (herpes lesion and unaffected contralateral side) and analyze the CD4+ T cells to determine whether they are enriched for cells of specific phenotypes in situ. We will determine how IL-32 blocks the response to latency reactivating stimuli and how IL-32 antagonists promote HIV reactivation. These studies will identify pathways and molecules that could be targeted to block HIV reactivation in response to HSV-2 or conversely, enhance latency reversal as part of ?shock and kill? HIV eradication strategies.

Public Health Relevance

Epidemiological studies consistently demonstrate that HSV-2 adversely impacts HIV. Defining the underlying mechanisms will lead to the development of new strategies for HIV eradication. We propose to test the hypothesis that HSV-2 promotes changes in peripheral blood CD4+ T cells that facilitate HIV reactivation and to identify pathways and molecules that could be targeted to block HIV reactivation in response to HSV-2 or conversely, enhance latency reversal as part of ?shock and kill? HIV eradication strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
6R01AI134367-03
Application #
9855333
Study Section
AIDS Clinical Studies and Epidemiology Study Section (ACE)
Program Officer
Sharp, Gerald B
Project Start
2017-12-05
Project End
2022-11-30
Budget Start
2019-01-01
Budget End
2019-11-30
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461