Toxoplasma gondii is a ubiquitous Apicomplexan protozoan parasite of mammals and birds. It is unusual in that propagation does not require passage through its definitive host enabling T. gondii to propagate clonally through its intermediate hosts. T. gondii causes congenital infections in immune competent hosts and opportunistic infections in immune compromised hosts. The predilection of this parasite for the central nervous system causing necrotizing encephalitis and for the eye causing chorioretinitis constitutes its major threat to patients. The development of these diseases is a consequence of the transition of bradyzoites, found within tissue cysts into actively replicating tachyzoites. It is believed that tissue cysts are not static structures, but regularly rupture reinvading new host cells. It is likely that in chronic toxoplasmosis, i.e. latent infection, tissue cysts within host cells, regularly transform to tachyzoites which are removed or sequestered by the immune system. Degenerating cysts are often seen in the brains of mice with chronic toxoplasmosis. Such a dynamic equilibrium between encysted and replicating forms leads to recurrent antigenic stimulation and the persistent antibody titers found in chronically infected hosts. The widespread distribution of T. gondii in humans and other animals is due to the ability of tissue cysts to permit oral transmission of this infection. The cyst wall is the critical structure for survival, reactivation and transmission of T. gondii. Understanding T. gondii developmental biology and formation of the cyst wall will inform strategies such as vaccine development and therapeutic agents to eliminate latency and prevent reactivation toxoplasmosis. Several lines of evidence suggest that bradyzoite differentiation is stress mediated and that the cyst wall (a modified parasitophorous vacuole membrane) contains many stage specific proteins and glycoproteins. Our laboratory group has identified several cyst wall specific proteins several of which have mucin type domains that are o-glycosylated and demonstrated that glycosylation is important for cyst wall stability. CST1, a cyst wall glycoprotein, appears to be a scaffolding protein for formation of the cyst wall and we hypothesize that other cyst wall proteins interact with CST1 in establishing the cyst wall. Our laboratory group has developed techniques to purify the cyst wall enabling proteomic characterization of this structure as well as adapted BirA tagging techniques to enable definition of the cyst wall interactome. Furthermore, we have established ppGalNAcTs knockout T. gondii strains that enable studies on the role of o-glycosylation in cyst wall formation. An integrated approach employing proteomic, immunologic and genetic techniques will be used to fully characterize the T. gondii cyst wall proteome and the importance and interactions of the identified cyst wall components. The improved understanding of the formation of the cyst wall provide by these studies will provide the basic underpinnings of new strategies to eliminate latent infection thereby preventing reactivation toxoplasmosis.

Public Health Relevance

Toxoplasma gondii is a pathogen of both immune competent and immunocompromised humans that is transmitted by contaminated food and water. It can also cause congenital infections with mental retardation. The tissue cyst surrounded by a cyst wall is critical for transmission and reactivation of this infection. Investigations on the formation of the cyst wall should help define new approaches to control of this pathogenic protozoan.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI134753-01A1
Application #
9593710
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mcgugan, Glen C
Project Start
2018-06-01
Project End
2023-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine, Inc
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Tomita, Tadakimi; Ma, Yanfen; Weiss, Louis (2018) Characterization of a SRS13: a new cyst wall mucin-like domain containing protein. Parasitol Res :