Arthropod-borne flaviviruses such as dengue virus, West Nile virus, yellow fever virus (YFV), and Zika virus, are a major cause of human disease. We are studying the early, post-fusion and pre-replication events in the flavivirus lifecycle by using the prototype flavivirus, YFV, as our model. Our overarching hypothesis is that flaviviruses, which alternately replicate in vertebrate and invertebrate hosts, have evolved to use i) highly conserved factors shared between hosts; and ii) multiple, redundant factors that may not be well conserved between hosts. Therefore, discoveries made with YFV will be validated and studied by comparison to other flaviviruses and between human and mosquito cells.
Aim 1 focuses on the post-fusion process of nucleocapsid uncoating, dissecting the mechanisms by which cells unlock this fateful cargo.
Aim 1 is a logical extension of our Preliminary Data showing that the delivery of a translatable YFV genome requires cellular ubiquitylation and VCP/p97, a cellular ATPase that extracts ubiquitylated proteins from large macromolecular complexes.
Aim 2 focuses on identifying the cellular protease(s) that cleave the viral NS1-2A polyprotein intermediate. Cleavage is essential for flavivirus replication (shown here), yet the identity of this protease has remained elusive for over two decades. We have identified a small family of related candidate NS1-2A proteases and are validating their activity by rigorous, combinatorial genetic ablation. These efforts will solve long- standing puzzles in flavivirus gene expression and replication and identify targets for future development of broadly acting antivirals.

Public Health Relevance

We are examining the early steps in the lifecycle of flaviviruses, including identification of cellular factors required for viral replication. Flaviviruses represent major threats to public health; understanding their lifecycle will facilitate the design of new or improved therapies and vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI154844-01A1
Application #
10234378
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Morabito, Kaitlyn Melissa
Project Start
2021-03-09
Project End
2026-02-28
Budget Start
2021-03-09
Budget End
2022-02-28
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Yale University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520