CD154 (CD40 ligand) expression by activated T cells plays a central role in the immune response. As such, CD154 expression has been implicated as a major target in the treatment of rheumatic diseases and validated by the demonstrated efficacy of CD154 blockade in animal models of Rheumatoid Arthritis and Systemic Lupus Erythematosus. Furthermore, CD154 gene expression is dysregulated in patients with Systemic Lupus Erythematosus. CD 154 (CD40 ligand) expression exhibits a unique pattern of regulation relative to cytokines. These studies have directly implicated CD154 mRNA degradation. We have established that a polypyrimidine-rich region in the 3'UTR of the CD154 mRNA is necessary and sufficient to reduce chimeric reporter gene expression in both cell lines and normal human CD4+ T lymphocytes, thus identifying this region as a cis-acting element. Furthermore, we have identified two proteins that bind to this polypyrimidine-rich region as distinct splice isoforms (PTB, PTB-T) of the PTB gene. This finding suggest that these proteins are trans-acting factors that determine the function of this region in mRNA decay. Overexpression of the novel smaller splice isoform we call PTB-T, consistently inhibits reporter gene expression in a CD154 3'UWR specific manner in normal human CD4+ T lymphocytes and cell lines. ? ? These data suggest the hypothesis that PTB-T interacts with the polypyrimidine-rich region in the CD154 3'UTR to mediate mRNA degradation. We propose to directly test this hypothesis as well as determine the biologic role of PTB-T in the modulation of CD154 mRNA stability. Subsequently, we will identify the pathway(s) by which PTB-T mediates these effects. In this manner, we will functionally delineate the molecular mechanism(s) which regulate CD154 mRNA turnover in vivo and determine their contribution to the unique pattern of CD154 gene regulation as well as the immune response. These studies will generate insights important for the development of approaches that will selectively modulate CD154 expression. ? ?