4-Estren-3alpha,17beta-diol (estren), a synthetic ligand of the estrogen (ER) or androgen (AR) receptor represents a novel class of activators of nongenotropic estrogen-like signaling (ANGELS), compounds that faithfully reproduce the nongenotropic actions of estradiol on osteoblast and osteoclast apoptosis in vitro and in vivo but lack the genotropic effects of classical estrogen. Estren has been shown to have distinct biologic effects compared to estradiol. Unlike estradiol, estren has no effect on female or male reproductive organs but increases serum osteocalcin, cortical width, and bone mineral density of ovariectomized females above the level of the estrogen-replete controls. In view of estren's distinct skeletal profile, versus classical estrogen or other anti-remodeling agents, the postulate that the superior effects of estren must result not only from its favorable effect on bone cell apoptosis, but also from additional mechanisms, will be tested. In studies leading directly to this application, the hypothesis that, unlike estradiol, estren may promote the commitment and/or differentiation of osteoblast progenitors, was explored. Estren induced lineage commitment and differentiation toward osteoblasts via ER-/AR-dependent, kinase-mediated potentiation of BMP-2 and Wnt signaling. Estradiol and DHT are three to four orders of magnitude less potent than estren in these effects. Unlike purported pro-differentiating effects of estradiol, which could be only shown in cells in which the expression of ERalpha was artificially increased by transfection of an ERalpha cDNA, the pro-differentiating effects of estren are demonstrable in bone cells, which express low levels of endogenous ER and AR. Thus, the molecular mechanism of the induction of osteoblast lineage commitment and differentiation by estren will be elucidated by (1) determining the specificity of the ligand/receptor interaction and (2) the involvement of BMP and Wnt signaling in these effects in murine and human osteoblast progenitors and in bone in vivo. A mechanistic explanation will also be sought for why sex steroids, although capable of nongenotropic signaling, differ from estren in their ability to induce lineage commitment and promote osteoblast differentiation, by (3) searching for genotropic counter-regulatory actions on cytokines, kinases, and the BMP and Wnt and signaling pathways. Results of these studies could provide essential understanding for mechanisms to control bone anabolism.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR051187-04
Application #
7371985
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Sharrock, William J
Project Start
2005-02-01
Project End
2008-12-31
Budget Start
2008-01-01
Budget End
2008-12-31
Support Year
4
Fiscal Year
2008
Total Cost
$256,855
Indirect Cost
Name
Columbia University (N.Y.)
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Kode, A; Mosialou, I; Manavalan, S J et al. (2016) FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia 30:1-13
Manolagas, Stavros C; Kronenberg, Henry M (2014) Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res 29:2131-40
Manolagas, Stavros C; Parfitt, A Michael (2013) For whom the bell tolls: distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases. Bone 54:272-8
Almeida, Maria; Martin-Millan, Marta; Ambrogini, Elena et al. (2010) Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha. J Bone Miner Res 25:769-81
Manolagas, Stavros C (2008) De-fense! De-fense! De-fense: scavenging H2O2 while making cholesterol. Endocrinology 149:3264-6
Ogita, Mami; Rached, Marie Therese; Dworakowski, Elzbieta et al. (2008) Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 149:5713-23
Manolagas, Stavros C; Almeida, Maria (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605-14
Almeida, Maria; Han, Li; Martin-Millan, Marta et al. (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282:27298-305
Kousteni, Stavroula; Almeida, Maria; Han, Li et al. (2007) Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol Cell Biol 27:1516-30
Almeida, Maria; Han, Li; Bellido, Teresita et al. (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342-51