The overall goal of this project is to design and implement novel strategies for cartilage repair and treatment of osteoarthritis (OA), leveraging tissue engineering and biological signals inspired by the sugar glucosamine (GlcN). Small molecule stimulation of tissue growth would provide a significant tool for the field of tissue engineering that frequently depends on complex and unstable growth factor proteins as biological signals. Preliminary data and published research from the initial funding period established a window of efficacy where chondrocytes, stem cells, and diseased osteoarthritic cells could be stimulated by GlcN to form more cartilage, with new sugar analogs developed by the Yarema Lab demonstrated an even more potent effect. From the mechanistic perspective, we discovered that certain novel analogs suppressed NF-: B, a molecule important in cartilage disease such as osteoarthritis. Finally, in vitro results were translated to pilot in vivo testing in a rodent model of OA with GlcN injected into joint space improving cartilage structure compared to saline control injections. These findings lay the groundwork for a medicinal chemistry approach to defining new small molecules for precise and effective intervention in tissue engineering for OA and cartilage repair. In this competitive renewal, we propose to investigate the ability of novel sugar analogs, designed by the Yarema Lab, to stimulate tissue growth of normal and osteoarthritic chondrocytes in three dimensional biomaterial scaffolds. For sugars demonstrating a significant stimulation of cartilage tissue growth, the mechanism of action will be evaluated. The sugar analog that demonstrates the greatest stimulation of normal and/or diseased cells will then be applied to a rodent animal model of OA. To accomplish these goals, this renewal application will again combine the expertise of a tissue engineer and a glycobiologist while adding new input from a rheumatologist active in clinical trials for glucosamine, to drive forward and translate this new approach for applying sugars in cartilage repair. Overall, the following specific aims will be pursued:
Specific Aim 1. Evaluate and compare the biological response and cartilage tissue development induced by novel GlcN sugar analogs on normal and osteoarthritis cells cultured in hydrogels.
Specific Aim 2. Determine the mechanism of GlcN and novel GlcN analogs on tissue development.
Specific Aim 3. Translation of GlcN/GlcN analogs to a rodent model of osteoarthritis.

Public Health Relevance

Osteoarthritis is a significant public health challenge with millions of Americans suffering from its debilitating effects on joints. We propose to develop new methods to treat OA and promote new cartilage formation using novel sugar analogs based on the sugar glucosamine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
2R01AR054005-04A2
Application #
8065308
Study Section
Special Emphasis Panel (ZRG1-BST-M (02))
Program Officer
Wang, Fei
Project Start
2006-07-01
Project End
2014-05-31
Budget Start
2010-08-26
Budget End
2011-05-31
Support Year
4
Fiscal Year
2010
Total Cost
$413,881
Indirect Cost
Name
Johns Hopkins University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Yang, Jessica P; Anderson, Amy E; McCartney, Annemarie et al. (2017) Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells. Tissue Eng Part A 23:253-262
Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu et al. (2016) Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration. Tissue Eng Part A 22:689-97
Kim, Chaekyu; Jeon, Ok Hee; Kim, Do Hun et al. (2016) Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials 83:93-101
Singh, Anirudha; Li, Peter; Beachley, Vince et al. (2015) A hyaluronic acid-binding contact lens with enhanced water retention. Cont Lens Anterior Eye 38:79-84
Beachley, Vince Z; Wolf, Matthew T; Sadtler, Kaitlyn et al. (2015) Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods 12:1197-204
Corvelli, Michael; Che, Bernadette; Saeui, Christopher et al. (2015) Biodynamic performance of hyaluronic acid versus synovial fluid of the knee in osteoarthritis. Methods 84:90-8
Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A et al. (2014) Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater 13:988-95
Gibson, Matthew; Li, Hanwei; Coburn, Jeannine et al. (2014) Intra-articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. J Orthop Res 32:302-9
Coburn, Jeannine M; Wo, Luccie; Bernstein, Nicholas et al. (2013) Short-chain fatty acid-modified hexosamine for tissue-engineering osteoarthritic cartilage. Tissue Eng Part A 19:2035-44
Sharma, Blanka; Fermanian, Sara; Gibson, Matthew et al. (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5:167ra6

Showing the most recent 10 out of 22 publications