It is estimated that one seventh of the US population suffer from some forms of musculoskeletal impairment. The social and economic implications of the effective treatment of these conditions are enormous. The goal of this project is to design osteoconductive and osteoinductive synthetic bone grafts possessing desirable mechanical strength and biochemical microenvironment for the reconstruction of skeletal defects with compromised natural healing capacities. The grafts are designed to provide instant mechanical protection and structural stabilization to the site of bony defects, and locally release exogenous growth factors and cytokines to promote bone graft healing. Specifically, we propose to incorporate an exogenous supply of BMP-2, RANKL and VEGF to the synthetic bone graft to induce proper host cell responses to elicit the coordinated remodeling and osteointegration of the graft with vascular ingrowth. Using ring opening polymerization and reverse addition fragmentation transfer polymerization in combination with high-fidelity bioconjugation chemistries, polymeric biodegradation domains, growth factor retention domains, bone mineral (hydroxyapatite) nucleation domains and cell adhesion domains are sequentially grafted around Si-based nanoparticle cores. The resulting injectable star-shaped macromers are then crosslinked in the absence or the presence of calcium apatite to generate bulk polymer or polymer-mineral composite bone grafts. The modular design enables that each functional domain of the graft be independently modulated to optimize the overall performance of the graft. A detailed strategy is proposed to characterize the structural and mechanical properties, the degradation characteristics, the HA-nucleation capacity and the bioactivities of the synthetic bone graft in vitro. In addition, a rat femoral segmental defect model that takes into account the weight-bearing nature of the musculoskeletal tissue is utilized to evaluate the in vivo performance and viability of the synthetic graft. The extent and quality of the remodeling, vascularization and osteointegration of the graft as a function of polymer domain compositions, osteoconductive mineral contents and the exogenous signaling molecules locally released from the grafts will be analyzed by histology, microcomputed tomography, electron microscopy and torsion tests.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR055615-05
Application #
8288023
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Wang, Fei
Project Start
2008-06-10
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2012
Total Cost
$275,159
Indirect Cost
$107,889
Name
University of Massachusetts Medical School Worcester
Department
Orthopedics
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Filion, Tera M; Skelly, Jordan D; Huang, Henry et al. (2017) Impaired osteogenesis of T1DM bone marrow-derived stromal cells and periosteum-derived cells and their differential in-vitro responses to growth factor rescue. Stem Cell Res Ther 8:65
Liu, Pingsheng; Song, Jie (2016) Well-controlled ATRP of 2-(2-(2-Azidoethyoxy)ethoxy)ethyl Methacrylate for High-density Click Functionalization of Polymers and Metallic Substrates. J Polym Sci A Polym Chem 54:1268-1277
Kutikov, Artem B; Gurijala, Anvesh; Song, Jie (2015) Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior. Tissue Eng Part C Methods 21:229-41
Kutikov, Artem B; Song, Jie (2015) Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 1:463-480
Kutikov, Artem B; Skelly, Jordan D; Ayers, David C et al. (2015) Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds. ACS Appl Mater Interfaces 7:4890-901
Liu, Pingsheng; Domingue, Emily; Ayers, David C et al. (2014) Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization. ACS Appl Mater Interfaces 6:7141-52
Liu, Pingsheng; Emmons, Erin; Song, Jie (2014) A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering. J Mater Chem B 2:7524-7533
Zhang, Jing; Song, Jie (2014) Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. Acta Biomater 10:3079-90
Liu, Pingsheng; Skelly, Jordan D; Song, Jie (2014) Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable high-efficiency delivery of therapeutic proteins. Acta Biomater 10:4296-303
Xu, Jianwen; Feng, Ellva; Song, Jie (2014) Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range. J Am Chem Soc 136:4105-8

Showing the most recent 10 out of 23 publications