Bone fractures and non-union defects often require surgical intervention where devices are used to correct the defect, and 5-10% of these procedures are compromised by bacterial infection. Current treatment options are limited to sustained, high doses of antibiotics and surgical debridement. These corrective procedures drive up healthcare costs and have sub-optimal patient outcomes as effective antibiotic doses are difficult to attain at the site of the infection due to the presence of a biofilm and toxicity considerations. Furthermore, the emergence of antibiotic-resistant bacteria raises concerns regarding the effectiveness of antibiotics to reduce biomaterial- associated infections. Therefore, there is a significant, unmet need for alternative therapeutic strategies to eliminate device-related infections. The objective of this renewal application is to engineer synthetic hydrogels delivering antimicrobial enzymes to eliminate bacterial infection and promote bone repair. Our central hypothesis is that controlled delivery of lysostaphin from osseo-reparative hydrogels will eliminate Staphylococcal infections and result in bone healing in murine models of implant-associated bone infection. The rationale for this research is that it will establish a localized strategy to effectively reduce bacterial infections during bone healing using a potent antimicrobial protein.
Aim 1 : Engineer lysostaphin- delivering injectable hydrogels for the treatment of infected bone fractures. We will engineer poly(ethylene glycol) (PEG) hydrogels that release active lysostaphin in response to the local wound environment. We will then test the ability of this material to eliminate Staphylococcal infections and support fracture healing in a pin-stabilized femur fracture model for both prophylactic and established infection scenarios.
Aim 2 : Engineer PEG hydrogels co-delivering lysostaphin and BMP-2 to eliminate bacterial infection and repair non-healing segmental bone defects. We will evaluate PEG hydrogels co-delivering lysostaphin and BMP-2 in prophylaxis and established infection bone defect cases. The proposed research is innovative because it focuses on engineering new classes of biomaterials that deliver a potent antimicrobial enzyme locally to eliminate bacterial infection and support bone repair. These studies will establish novel bioactive materials that eliminate bone-related infections and enhance bone formation for improved bone repair in various clinical applications.

Public Health Relevance

Device-associated infections severely limit the success of many orthopaedic procedures, and current antibiotic treatments have limited effectiveness and may lead to antibiotic-resistant bacteria. We will engineer new classes of materials for controlled release of a potent antimicrobial enzyme to eliminate the bacteria and promote bone fracture and defect repair.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR062920-08
Application #
9743075
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Washabaugh, Charles H
Project Start
2012-08-01
Project End
2022-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Georgia Institute of Technology
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30332
Jang, Yeongseon; Choi, Won Tae; Johnson, Christopher T et al. (2018) Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomater Sci Eng 4:90-97
Johnson, Christopher T; Wroe, James A; Agarwal, Rachit et al. (2018) Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci U S A 115:E4960-E4969
Moulisová, Vladimíra; Gonzalez-García, Cristina; Cantini, Marco et al. (2017) Engineered microenvironments for synergistic VEGF - Integrin signalling during vascularization. Biomaterials 126:61-74
Cruz-Acuña, Ricardo; García, Andrés J (2017) Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol 57-58:324-333
Cruz-Acuña, Ricardo; Quirós, Miguel; Farkas, Attila E et al. (2017) Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 19:1326-1335
Silva, Joana M; García, José R; Reis, Rui L et al. (2017) Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomater 51:279-293
Alas, Guillermo R; Agarwal, Rachit; Collard, David M et al. (2017) Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion. Acta Biomater 59:108-116
Han, Woojin M; Jang, Young C; García, Andrés J (2017) Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biol 60-61:96-109
Llopis-Hernández, Virginia; Cantini, Marco; González-García, Cristina et al. (2016) Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci Adv 2:e1600188
García, José R; Clark, Amy Y; García, Andrés J (2016) Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A 104:889-900

Showing the most recent 10 out of 28 publications