The long-term objectives of this application are to understand how molecular and epigenetic mechanisms control osteogenic differentiation of mesenchymal stem/stromal cells (MSCs), osteoblast function, and bone formation. MSCs are multipotent progenitor cells with self-renewal capabilities and multilineage differentiation potentials including osteogenesis, chondrogenesis and adipogenesis. Although significant progress has been made in understanding transcriptional control of MSC differentiation, little is known about how bone formation is epigenetically regulated. Histone methylation is an important process linked to the activation and repression of gene expression, thus it plays a critical role in epigenetic regulation of cell differentiation. While growing evidence indicates tht histone demethylases epigenetically regulate embryonic stem cell properties and functions, it is largely unknown what affect demethylases have on MSC differentiation and bone formation. To explore the role of demethylases in MSC differentiation, we systemically profiled the expression of histone demethylases in BMP-stimulated MSCs from bone marrow, as BMPs are potent inducers of osteogenic differentiation. We found that BMPs rapidly induced the expression of the lysine (K)-specific demethylase (KDM4B;also known as JMJD2B) that demethylates trimethylated histone H3 at lysine 9 (H3K9me3). H3K9me3 is a hallmark for gene silencing involved in growth and development. In general, a group of specific genes are activated when the stem cell differentiation program is triggered. Our preliminary studies demonstrated that KDM4B promoted osteogenic differentiation of MSCs while inhibiting adipogenic differentiation. Moreover, we found that the expression of Kdm4b was significantly down regulated in MSCs isolated from aging mice compared to young mice. Co-incidentally, H3K9me3 marks were significantly increased in osteoblasts of aging mice or ovariectomized mice. Based on these novel discoveries, in this application, we hypothesize that erasing H3K9me3 marks by KDM4B plays integral roles in osteogenic differentiation of MSCs in vitro and bone formation and in vivo.
Three specific aims are proposed to test our hypothesis.
Aim 1 is to determine whether KDM4B epigenetically regulate MSC lineage commitment through induction of DLX5.
Aim 2 is to explore how erasing H3K9me3 by KDM4B coordinately regulates osteogenic differentiation of MSCs.
Aim 3 is to determine whether KDM4B is required for bone formation in vivo and whether dysregulation of KDM4B impairs osteoblast function and bone formation in osteoporosis. Since histone demethylases are chemically modifiable, KDM4B may present as a novel therapeutic target for specifically controlling the differentiation of MSCs in regenerative medicine, and also lead to clues for new treatment in metabolic bone diseases such as, osteoporosis.

Public Health Relevance

Bone marrow mesenchymal/stromal stem cells (MSCs) are adult stem cells which can form bone, cartilage and fat tissues. MSCs hold significant promise for regenerative therapies due to their convenient isolation, lack of immunogenicity, as well as their ability to transdifferentiate and to create a tissue microenvironment favorable for tissue repair (27). Their therapeutic utility hinges upon the understanding of molecular and epigenetic mechanisms that regulate their differentiation. In this application, we will examine how MSC fate decision is epigenetically regulated in vitro and vivo and whether histone modifications are associated with metabolic bone diseases. The findings from this study will have important implications in developing novel strategies for craniofacial bone regeneration, and may lead to clues for new treatment in metabolic bone diseases such as osteoporosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
1R01AR063089-01A1
Application #
8511396
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Chen, Faye H
Project Start
2013-04-01
Project End
2018-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
1
Fiscal Year
2013
Total Cost
$327,250
Indirect Cost
$114,750
Name
University of California Los Angeles
Department
Dentistry
Type
Schools of Dentistry
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Cheng, Yingduan; Yuan, Quan; Vergnes, Laurent et al. (2018) KDM4B protects against obesity and metabolic dysfunction. Proc Natl Acad Sci U S A 115:E5566-E5575
Kang, M K; Mehrazarin, S; Park, N-H et al. (2017) Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 23:709-720
Hong, Christine; Song, Dayoung; Lee, Dong-Keun et al. (2017) Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen-nanodiamond hydrogel. Proc Natl Acad Sci U S A 114:E7218-E7225
Tarapore, Rohinton S; Lim, Jason; Tian, Chen et al. (2016) NF-?B Has a Direct Role in Inhibiting Bmp- and Wnt-Induced Matrix Protein Expression. J Bone Miner Res 31:52-64
Fan, Jiabing; Im, Choong Sung; Guo, Mian et al. (2016) Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists. Stem Cells Transl Med 5:539-51
Hu, Youjin; Huang, Kevin; An, Qin et al. (2016) Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol 17:88
Lee, Hye-Lim; Yu, Bo; Deng, Peng et al. (2016) Transforming Growth Factor-?-Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells 34:711-9
Yu, Bo; Wang, Cun-Yu (2016) Osteoporosis: The Result of an 'Aged' Bone Microenvironment. Trends Mol Med 22:641-644
Alvarez, Ruth; Lee, Hye-Lim; Hong, Christine et al. (2015) Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int J Oral Sci 7:205-12
Pacios, Sandra; Xiao, Wenmei; Mattos, Marcelo et al. (2015) Osteoblast Lineage Cells Play an Essential Role in Periodontal Bone Loss Through Activation of Nuclear Factor-Kappa B. Sci Rep 5:16694

Showing the most recent 10 out of 13 publications