Acute transient inflammation is crucial for initiation of bone healing, osseointegration of implants, osteogenic differentiation of MSCs, and immunomodulation. However, harmful chronic inflammation and bone loss (osteolysis) are induced by adverse stimuli including wear byproducts from joint replacements (JR). Nuclear Factor kappa B (NF-?B) is a critical transcription factor in both macrophages (m?) and MSCs that regulates inflammation, bone formation/remodeling, and aging. We showed that preconditioning MSCs with lipopoly- saccharide (LPS) and tumor necrosis factor-? (TNF-?) to induce acute transient activation of NF-?B synergistically enhances osteogenesis, and modulates m? polarization from a pro-inflammatory (M1) to an anti-inflammatory pro-regenerative (M2) phenotype. Furthermore, inhibition of persistent NF-?B signaling using an NF-?B decoy OligoDeoxyNucleotide (ODN) was shown to mitigate inflammatory bone loss. We have genetically modified MSCs to sense NF-?B activation and then increase production of the anti-inflammatory pro-regenerative cytokine IL-4. The purpose of this grant is to accelerate net bone formation and mitigate chronic inflammation and osteolysis via NF-kB driven immunomodulation using preconditioned or genetically modified MSCs transplanted to the local environment.
Specific Aim #1 a -To define the critical immunomodulatory interactions of preconditioned vs. NF-?B sensing and IL-4 secreting MSCs on m? exposed to wear byproducts from orthopaedic implants.
Specific Aim #1 b - To enhance osteogenesis by using preconditioned vs. NF-?B sensing and IL-4 secreting MSCs in an MSC/m? co-culture model exposed to wear byproducts from orthopaedic implants.
Specific Aim #2 a - To demonstrate the therapeutic effects of transplanted preconditioned MSCs on bone during the acute inflammatory stage (simulating the stage of initial implantation of a prosthesis and osseointegration) using the murine continuous femoral particle infusion model.
Specific Aim #2 b - To demonstrate the therapeutic effects of preconditioned vs. NF-?B sensing and IL-4 secreting MSCs on net bone formation during the chronic inflammatory stage (simulating established wear particle disease) using the murine continuous femoral particle infusion model.
Specific Aim #3 - To demonstrate that the above principles of modulating acute and chronic inflammation are valid irrespective of animal sex (male vs. female mice) or age (young vs. elderly mice) in vivo. We hypothesize that NF-?B preconditioning or NF-?B sensing and IL-4 secreting MSCs will enhance the osteogenic and immunomodulatory signaling of MSCs, enhancing bone formation via crosstalk by m? and MSCs. NF-kB driven immunomodulation of MSCs should mitigate particle-induced inflammation, osteoclast activation, and enhance bone formation in young and aged, male and female mice. NF-kB driven immune modulation of MSCs is novel, mechanistic, and directly translational to inflammatory disorders in other organ systems.

Public Health Relevance

Acute transient inflammation is crucial for bone healing, integration of implants, differentiation of bone progenitor cells (MSCs), and immune modulation. However, wear byproducts from joint replacements (JR) causes harmful chronic inflammation and subsequent bone loss (osteolysis). Nuclear Factor kappa B (NF-?B) is the critical transcription factor in both immune cells (macrophages - m?) and MSCs that regulates inflammation, bone healing, and aging. The purpose of this grant is to accelerate bone formation and mitigate chronic inflammation and osteolysis via NF-kB driven immune modulation using preconditioned or genetically modified MSCs transplanted to the local bone environment in young and aged, male and female mice.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR063717-08
Application #
9762583
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Washabaugh, Charles H
Project Start
2012-09-15
Project End
2022-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Stanford University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Lin, Tzuhua; Pajarinen, Jukka; Kohno, Yusuke et al. (2018) Trained murine mesenchymal stem cells have anti-inflammatory effect on macrophages, but defective regulation on T-cell proliferation. FASEB J :fj201801845R
Chan, Charles K F; Gulati, Gunsagar S; Sinha, Rahul et al. (2018) Identification of the Human Skeletal Stem Cell. Cell 175:43-56.e21
Maruyama, Masahiro; Nabeshima, Akira; Pan, Chi-Chun et al. (2018) The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis. Biomaterials 187:39-46
Lin, Tzuhua; Pajarinen, Jukka; Kohno, Yusuke et al. (2018) Transplanted interleukin-4--secreting mesenchymal stromal cells show extended survival and increased bone mineral density in the murine femur. Cytotherapy 20:1028-1036
Pajarinen, Jukka; Lin, Tzu-Hua; Goodman, Stuart B (2018) Production of GFP and Luciferase-Expressing Reporter Macrophages for In Vivo Bioluminescence Imaging. Methods Mol Biol 1790:99-111
Lin, Tzuhua; Kohno, Yusuke; Huang, Jhih-Fong et al. (2018) NF?B sensing IL-4 secreting mesenchymal stem cells mitigate the proinflammatory response of macrophages exposed to polyethylene wear particles. J Biomed Mater Res A 106:2744-2752
Pajarinen, Jukka; Lin, Tzuhua; Gibon, Emmanuel et al. (2018) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials :
Pajarinen, Jukka; Nabeshima, Akira; Lin, Tzu-Hua et al. (2017) * Murine Model of Progressive Orthopedic Wear Particle-Induced Chronic Inflammation and Osteolysis. Tissue Eng Part C Methods 23:1003-1011
Lin, T-H; Pajarinen, J; Lu, L et al. (2017) NF-?B as a Therapeutic Target in Inflammatory-Associated Bone Diseases. Adv Protein Chem Struct Biol 107:117-154
Lin, Tzu-Hua; Gibon, Emmanuel; Loi, Florence et al. (2017) Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF-?B activity. J Orthop Res 35:281-288

Showing the most recent 10 out of 70 publications