Genome-wide association studies (GWAS) and related approaches have identified >60 rheumatoid arthritis (RA) risk loci. Despite this, many alleles remain to be discovered to account for heritability estimates observed in families. We have published data that most common RA risk alleles are shared across diverse ethnic groups.
In Aim 1, we will exploit this observation to discover new RA risk alleles - we will conduct a multi- ethnic GWAS of ~20,000 RA cases and 60,000 matched controls (Asian and European ancestry). We will also compare and contrast genetic findings across two ethnic groups, and develop new analytical methods. We have data (manuscript in press) that RA risk genes identified from GWAS harbor rare alleles that contribute to risk of RA. Together with data from other diseases, this leads to the hypothesis that causal genes at RA risk loci discovered by GWAS will contain independent, protein-coding mutations (most of which will be rare in the general population).
In Aim 2, we will test this hypothesis by sequencing all genes (~650 in total) identified by GWAS in 1,300 RA case and 1,300 non-RA controls of European ancestry. We will also sequence ~2,000 RA case-control samples of Asian ancestry in order to compare and contrast genetic findings across two ethnic groups. We will perform genetic burden tests to determine which genes harbor more rare risk alleles in cases compared to controls than would be expected by chance. However, finding causal variants and genes is only the first step in translating genetic discoveries to improved patient care, and drug discovery in particular. We hypothesize that genes with an allelic series (i.e., multiple alleles that influence disease risk) re excellent drug targets, especially genes that carry loss-of-function (LOF) alleles that protect from disease. We have unpublished data on one RA risk locus that demonstrates our ability to progress from a GWAS to a high-throughput screen (HTS) of ~2,000 small molecules.
In Aim 3 we will extend this approach to new RA risk genes: for at least one gene, we will understand the functional consequences of new RA risk alleles using cutting-edge molecular techniques (e.g., TALENs, RNAi), and use this information to conduct an HTS. Together, these three Aims will (1) discover new RA risk loci using GWAS in Europeans and Asians, (2) discover rare RA risk alleles at causal genes from GWAS loci (also in Europeans and Asians), and (3) translate genetic discoveries into new biology and an HTS of small molecule compounds. IMPACT: We will build upon our past accomplishments to perform the most comprehensive genetic study of RA to date (from common to rare alleles). We will develop innovative methods for integrating GWAS and sequence data, as well as innovative methods to use human genetics to guide drug discovery. Our team has all of the experience and resources to accomplish these Aims.

Public Health Relevance

A long-term goal of understanding the genetic basis of rheumatoid arthritis is to improve care of patients with this common and debilitating disease. In theory, identifying specific pieces of DNA ('alleles') should aid in diagnosing a treatable condition either prior to onset of symptoms, or early in the course of disease before bone destruction occurs. In addition, genetics should provide insight into important steps of the disease pathway, allowing for the development of new therapies that target these pathways in at-risk individuals.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Wang, Yan Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Hinks, Anne; Marion, Miranda C; Cobb, Joanna et al. (2018) Brief Report: The Genetic Profile of Rheumatoid Factor-Positive Polyarticular Juvenile Idiopathic Arthritis Resembles That of Adult Rheumatoid Arthritis. Arthritis Rheumatol 70:957-962
Mizoguchi, Fumitaka; Slowikowski, Kamil; Wei, Kevin et al. (2018) Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 9:789
Slowikowski, Kamil; Wei, Kevin; Brenner, Michael B et al. (2018) Functional genomics of stromal cells in chronic inflammatory diseases. Curr Opin Rheumatol 30:65-71
Nigrovic, Peter A; Raychaudhuri, Soumya; Thompson, Susan D (2018) Review: Genetics and the Classification of Arthritis in Adults and Children. Arthritis Rheumatol 70:7-17
Westra, Harm-Jan; Martínez-Bonet, Marta; Onengut-Gumuscu, Suna et al. (2018) Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet 50:1366-1374
Finucane, Hilary K; Reshef, Yakir A; Anttila, Verneri et al. (2018) Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 50:621-629
Hinks, A; Bowes, J; Cobb, J et al. (2017) Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases. Ann Rheum Dis 76:765-772
Sparks, Jeffrey A; Barbhaiya, Medha; Karlson, Elizabeth W et al. (2017) Investigating methotrexate toxicity within a randomized double-blinded, placebo-controlled trial: Rationale and design of the Cardiovascular Inflammation Reduction Trial-Adverse Events (CIRT-AE) Study. Semin Arthritis Rheum 47:133-142
Cui, Jing; Diogo, Dorothee; Stahl, Eli A et al. (2017) Brief Report: The Role of Rare Protein-Coding Variants in Anti-Tumor Necrosis Factor Treatment Response in Rheumatoid Arthritis. Arthritis Rheumatol 69:735-741
Karnes, Jason H; Bastarache, Lisa; Shaffer, Christian M et al. (2017) Phenome-wide scanning identifies multiple diseases and disease severity phenotypes associated with HLA variants. Sci Transl Med 9:

Showing the most recent 10 out of 57 publications