Musculoskeletal disorders with bone deficiencies, and conditions such as hip and knee problems are common important human health conditions that exist today. In these situations, reconstruction is often accompanied by an artificial metallic implant that must integrate with the surrounding bone. The objective of this grant application is focused on hydroxyapatite (HA) coating with selected dopants and small molecules on Titanium (Ti) substrates to improve bioactivity with enhanced tissue material interactions. The long-term goal of this research is to develop novel HA-coated metal implants by designing compositionally graded, small molecule / ionically doped nanoscale coatings for younger patients and revision surgeries in hip, shoulder or knee implants, with improved in vivo lifetime due to enhanced osseointegration. Our design goals are to: 1) enhanced interfacial mechanical properties via controlled chemistry and microstructure and 2) improve bioactivity and introduce osteoinductivity in HA-coated metal implants. Our preliminary data show that laser and RF induction plasma processed HA and tricalcium phosphate (TCP, another commonly used calcium phosphate phase) coating on Ti can eliminate discrete and weak metal- ceramic interface to improve interfacial strength of coatings. We hypothesize that optimized laser and plasma processing parameters along with dopant chemistry can produce a compositionally graded HA coating with strong interface to improve mechanical stability of coatings in vivo in metal implants.
In Aim 1, we will study their gradient microstructure, physical and mechanical properties. We will test and compare our implants with commercially available coated implants from Biomet Inc., please see the attached support letter. Based on our preliminary data, we show that selected dopants can promote early-stage bone tissue integration in rat and control human osteoblast (OB) and osteoclast (OC) activities in vitro. Since Si can induce angiogenesis, Sr and Mg reduce OC activities, Mg and Zn enhance OB activities, we hypothesize that the presence of dopants will regulate in vitro biocompatibility as well as in vivo bone tissue integration.
In Aim 2, we will evaluate doped HA coated Ti samples, with interfacial mechanical strength >15 MPa per current ASTM standard, creating an intramedullary defect in the distal femur in rat and rabbit models. Our preliminary data shows that HA and TCP can be used in loading and releasing small molecule drug and protein, e.g. alendronate (AD, a bisphosphonate, BP, drug) / model protein bovine serum albumin (BSA) and presence of AD can increase local bone density. Our hypothesis is that the dopants will improve early stage bone cell attachment and in vivo tissue integration with the coating while the small molecule drug, e.g. Alendronate, will locally increase bone density after implantation, especially in revision surgeries.
In Aim 3, we will determine the bioactivity, dopant / drug release kinetics in vitro, followed by in vivo studies to evaluate bone tissue integration of these coatings using intramedullary defects in rat distal femurs. The scientific understanding from this program will lead to improved long-term fixation of cementless joint replacements and other metal implants.

Public Health Relevance

In many clinical situations reconstruction is often accompanied by an artificial metallic implant that must integrate with the surrounding bone. Bone loss due to trauma, aging, deep infection, tumor, irradiation, wear particles associated with periprosthetic osteolysis and other causes are challenging clinical scenarios. In these situations, reconstruction is often accompanied by an artificial metallic implant that must integrate with the surrounding bone. The objective of this grant application is focused on hydroxyapatite (HA) coating with selected dopants and small molecules on Titanium (Ti) substrates to improve bioactivity with enhanced tissue material interactions. The scientific understanding from this program will lead to improved long-term fixation of cementless joint replacements, especially in revision surgeries where bone volume is compromised and for other metal implants.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR066361-03
Application #
9107817
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Washabaugh, Charles H
Project Start
2014-09-01
Project End
2019-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Washington State University
Department
Type
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Bose, Susmita; Vu, Ashley A; Emshadi, Khalid et al. (2018) Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater Sci Eng C Mater Biol Appl 88:166-171
Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 66:6-22
Bose, Susmita; Sarkar, Naboneeta; Banerjee, Dishary (2018) Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration. Mater Today Chem 8:110-120
Bose, Susmita; Banerjee, Dishary; Robertson, Samuel et al. (2018) Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds. Ann Biomed Eng 46:1241-1253
Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman et al. (2017) In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants. Ann Biomed Eng 45:249-260
Vahabzadeh, Sahar; Bose, Susmita (2017) Effects of Iron on Physical and Mechanical Properties, and Osteoblast Cell Interaction in ?-Tricalcium Phosphate. Ann Biomed Eng 45:819-828
Hoover, Sean; Tarafder, Solaiman; Bandyopadhyay, Amit et al. (2017) Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications. Mater Sci Eng C Mater Biol Appl 79:763-769
Bose, Susmita; Tarafder, Solaiman; Bandyopadhyay, Amit (2017) Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds. Ann Biomed Eng 45:261-272
Vahabzadeh, Sahar; Roy, Mangal; Bose, Susmita (2015) Effects of Silicon on Osteoclast Cell Mediated Degradation, In Vivo Osteogenesis and Vasculogenesis of Brushite Cement. J Mater Chem B 3:8973-8982
Vahabzadeh, Sahar; Roy, Mangal; Bandyopadhyay, Amit et al. (2015) Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater 17:47-55

Showing the most recent 10 out of 11 publications