Emerging evidence suggests that connexins and gap junctional intercellular communication (GJIC) play a critical role in bone turnover especially in response to mechanical load. In vitro studies suggest that GJIC is critical for maximal bone cell network response to mechanical load and predict that, in the absence of GJIC, bone would be less responsive to mechanical load. However, recent in vivo data from our laboratory, as well as others, suggest that, quite paradoxically, deficiency in bone cell connexin 43 (Cx43), the predominant gap junction protein in bone, actually increases bone's anabolic response to mechanical load. Furthermore, our laboratory as well as one other has recently demonstrated that Cx43 deficiency desensitize bone to the catabolic effect of mechanical unloading. These recent developments suggest a paradigm shift in our understanding of connexins, GJIC and mechanotransduction in bone. That is, inhibiting bone cell Cx43 expression or GJIC has a beneficial effect on bone's response to its mechanical environment. However, the mechanism underlying this surprising development is unknown. To address this we will examine the hypothesis that inhibiting osteocytic Gja1 expression increases the anabolic response of bone to mechanical load and decreases the catabolic response to unloading through a mechanism involving apoptosis, RANKL/OPG and WNT/?-catenin signaling pathways. During this 5 year project we will use in vitro cell culture and well established, as well as newly developed, genetically engineered in vivo mouse models, to examine 3 specific aims: 1) Examine the effect of mechanical loading on bone from osteocyte selective Cx43-deficient mice and mice with osteocytes deficient in both Cx43 and ?-catenin;2) Examine the effect of mechanical unloading via hind limb suspension (HLS) on bone from the same genotypes examined in aim 1;and 3) Examine the effect of fluid flow on WNT/?-catenin and RANKL/OPG signaling in osteocytic cells with and without Cx43. The expected outcomes of our research will contribute molecular-level knowledge of bone adaptation to its mechanical environment, provide seminal mechanistic insights into metabolic bone disease and facilitate development of new skeletal regeneration strategies, thereby providing a broad translational basis for our research focus.

Public Health Relevance

Successful completion of this project will identify the role connexins play in the adaptation of bone to its mechanical environment This in turn will identify novel therapeutic targets for treating metabolic bone diereses including osteoporosis. It will also provide information critical to developing innovative skeletal regeneration strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
9R01AR068132-15A1
Application #
8757720
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Sharrock, William J
Project Start
1994-09-15
Project End
2019-07-31
Budget Start
2014-08-15
Budget End
2015-07-31
Support Year
15
Fiscal Year
2014
Total Cost
$344,068
Indirect Cost
$124,068
Name
Pennsylvania State University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Meng, Fanchi; Murray, Graeme F; Kurgan, Lukasz et al. (2018) Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro. Sci Rep 8:6716
Speacht, Toni L; Krause, Andrew R; Steiner, Jennifer L et al. (2018) Combination of hindlimb suspension and immobilization by casting exaggerates sarcopenia by stimulating autophagy but does not worsen osteopenia. Bone 110:29-37
Plotkin, Lilian I; Speacht, Toni L; Donahue, Henry J (2015) Cx43 and mechanotransduction in bone. Curr Osteoporos Rep 13:67-72
Govey, Peter M; Kawasawa, Yuka Imamura; Donahue, Henry J (2015) Mapping the osteocytic cell response to fluid flow using RNA-Seq. J Biomech 48:4327-32
Lloyd, Shane A; Loiselle, Alayna E; Zhang, Yue et al. (2014) Shifting paradigms on the role of connexin43 in the skeletal response to mechanical load. J Bone Miner Res 29:275-86
Lloyd, Shane A; Loiselle, Alayna E; Zhang, Yue et al. (2014) Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis. BMC Musculoskelet Disord 15:122
Govey, Peter M; Jacobs, Jon M; Tilton, Susan C et al. (2014) Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways. J Biomech 47:1838-45
Lloyd, Shane A; Loiselle, Alayna E; Zhang, Yue et al. (2013) Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone 57:76-83
Riddle, Ryan C; Donahue, Henry J (2009) From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 27:143-9