The overall objective of the research program is the development of a rational scientific basis for combining radiation and chemotherapy for the improved treatment and control of cancer. Experiments, both in vitro and in vivo are directed toward the systematic investigation of the basic properties and responses of tumor cells, the vascular dynamics of tumors as well as the responses of selected normal tissues to ionizing radiation and drugs administered separately or in combination. Investigation of various schedules for combining these modalities, in the search for positive interactions on the tumor and improved therapeutic ratios, are based on detailed studies of the kinetics of drug delivery, tumor growth, cellular damage and repair as well as vascular and normal tissue responses.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA020329-10
Application #
3165265
Study Section
Experimental Therapeutics Subcommittee 2 (ET)
Project Start
1976-09-30
Project End
1987-08-31
Budget Start
1985-09-01
Budget End
1986-08-31
Support Year
10
Fiscal Year
1985
Total Cost
Indirect Cost
Name
University of Rochester
Department
Type
Schools of Medicine
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Laderoute, K R; Mendonca, H L; Calaoagan, J M et al. (1999) Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protei J Biol Chem 274:12890-7
Waleh, N S; Calaoagan, J; Murphy, B J et al. (1998) The redox-sensitive human antioxidant responsive element induces gene expression under low oxygen conditions. Carcinogenesis 19:1333-7
Fenton, B M; Raubertas, R F; Boyce, D J (1995) Quantification of micro-regional heterogeneities in tumor oxygenation using intravascular HbO2 saturations. Radiat Res 141:49-56
Kiani, M F; Fenton, B M (1995) Inherent cellular differences may explain the dissimilar survival of RIF-1 and KHT tumour cells under aerobic and hypoxic conditions. Int J Radiat Biol 67:449-52
Waleh, N S; Brody, M D; Knapp, M A et al. (1995) Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res 55:6222-6
Ausserer, W A; Bourrat-Floeck, B; Green, C J et al. (1994) Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol 14:5032-42
Mansbridge, J; Murphy, B; Morhenn, V et al. (1994) The response of human dermal microvascular endothelial cells to hypoxia. Biochim Biophys Acta 1223:209-18
Murphy, B J; Laderoute, K R; Chin, R J et al. (1994) Metallothionein IIA is up-regulated by hypoxia in human A431 squamous carcinoma cells. Cancer Res 54:5808-10
Kwok, T T; Sutherland, R M (1994) Repair of potentially lethal radiation damage in human squamous carcinoma cells after chronic hypoxia. Int J Radiat Oncol Biol Phys 29:255-8
Mansbridge, J N; Ausserer, W A; Knapp, M A et al. (1994) Adaptation of EGF receptor signal transduction to three-dimensional culture conditions: changes in surface receptor expression and protein tyrosine phosphorylation. J Cell Physiol 161:374-82

Showing the most recent 10 out of 58 publications