The long-term goal of this research is to improve platinum-based cancer therapy. Platinum drugs are administered to nearly half of all cancer patients receiving chemotherapy. Despite the efficacy of these treatments, drug resistance, toxic side effects, and tumor recurrence are critical barriers that need to be addressed for the next generation of platinum chemotherapeutics. Overcoming these obstacles requires improved understanding of factors that stabilize platinum compounds en route to the tumor, the invention of better strategies for selective drug uptake and retention, and the design of constructs that eradicate cancerous tissue. The three specific aims of the proposed research address these objectives.
The first aim i s to deploy methods for directing platinum agents to cancer cells by targeting their unique biology. Tactics for achieving this goal include programmed delivery through cancer-specific receptors on the cell surface and the synthesis and evaluation of dual-threat constructs. The latter capitalize on the power of Pt-DNA adducts to arrest transcription and trigger apoptosis while simultaneously disabling factors that undermine efficacy, such as cancer stem cells in the tumor microenvironment. The approaches include linking cancer cell-targeting units or apoptosis-enhancing factors to a platinum(II) drug, or to a platinum(IV) prodrug that will release such a component upon platinum reduction in the cancer cell, as well as packaging the platinum and auxiliary modules in biodegradable nanoparticles.
The second aim of this proposal is to understand and improve phenanthriplatin, a recently discovered, uniquely potent cationic platinum complex derived from cisplatin by replacing one of its chloride ligands with phenanthridine. Phenanthriplatin is highly differentiated in the spectrum of cancer cells that it targets compared to any other platinum drug, indicating its potential to circumvent mechanisms that limit conventional platinum chemotherapy. The approaches include investigating the DNA interactions of phenanthriplatin and their effects on cellular function, experiments to probe and stimulate its mechanisms of inducing cell death, and chemically modifying it to install dual-threat features similar to those planned for the cisplatin drug family ultimately to establish the utility of phenanthriplatin in vivo.
The final aim i s to deliver a high bolus of platinum to cancer cells to improve the therapeutic response. This goal will be met by the synthesis of self-assembled supramolecular constructs based on Pt(II) centers that form a spherical cage with hydrophobic cavities that can accommodate an additional payload of Pt(IV) prodrugs. Taken together, research proposed in the three aims will give rise to a greater understanding of conventional and non-traditional platinum anticancer agents, providing information that will guide the generation of novel and more effective chemotherapeutic candidates. The results of these investigations will also be of value to other investigators in the rapidly expanding field of metal-based medicines, and it is expected that the innovative concepts introduced here for understanding and improving platinum anticancer agents can be readily adapted for other therapeutic DNA-binding metal complexes.

Public Health Relevance

This project aims to increase the understanding of, and make improvements upon, cisplatin and related anticancer drugs, a family comprising three widely used and successful chemotherapeutic agents that contain platinum. The knowledge acquired will be used to design, synthesize, and evaluate new platinum-based anticancer drug candidates, and preliminary work toward these goals has aided Blend Therapeutics (blendtx.com) 'to advance two lead molecules through IND-enabling studies, each of which involves a novel platinum entity with new modes of action for cancer therapy.'

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA034992-34
Application #
9036937
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Fu, Yali
Project Start
1983-01-01
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
34
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
Vernekar, Amit A; Berger, Gilles; Czapar, Anna E et al. (2018) Speciation of Phenanthriplatin and Its Analogs in the Core of Tobacco Mosaic Virus. J Am Chem Soc 140:4279-4287
Riddell, Imogen A (2018) Cisplatin and Oxaliplatin: Our Current Understanding of Their Actions. Met Ions Life Sci 18:
Lannagan, Tamsin R M; Lee, Young K; Wang, Tongtong et al. (2018) Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut :
Roper, Jatin; Tammela, Tuomas; Akkad, Adam et al. (2018) Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat Protoc 13:217-234
Ling, Xiang; Chen, Xing; Riddell, Imogen A et al. (2018) Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Lett 18:4618-4625
Zhou, Wen; Almeqdadi, Mohammad; Xifaras, Michael E et al. (2018) The effect of geometric isomerism on the anticancer activity of the monofunctional platinum complex trans-[Pt(NH3)2(phenanthridine)Cl]NO3. Chem Commun (Camb) 54:2788-2791
Hucke, Anna; Park, Ga Young; Bauer, Oliver B et al. (2018) Interaction of the New Monofunctional Anticancer Agent Phenanthriplatin With Transporters for Organic Cations. Front Chem 6:180
Mihaylova, Maria M; Cheng, Chia-Wei; Cao, Amanda Q et al. (2018) Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 22:769-778.e4
Roper, Jatin; Yilmaz, Ömer H (2017) Metabolic Teamwork in the Stem Cell Niche. Cell Metab 25:993-994
Mana, Miyeko D; Kuo, Elaine Yih-Shuen; Yilmaz, Ömer H (2017) Dietary Regulation of Adult Stem Cells. Curr Stem Cell Rep 3:1-8

Showing the most recent 10 out of 153 publications