Medulloblastomas (MBs) are prototypical primitive neuroectodermal tumors (PNETs) of the cerebellum, and they are among the most common pediatric brain tumors. Until recently, understanding of the basic cell biology and pathogenesis of these tumors remained largely enigmatic. However, it is now established that many MB cells and nearly all MB cell lines resemble immature central nervous system (CNS) neurons or their progenitors. Since MBs occur almost exclusively in young children when heterotopic immature neurons and neuroectodermal progenitors are most common in cerebellum, MBs may arise from the failure of neuroectodermal progenitor cells to undergo programmed cell death or to complete a normal program of neuronal differentiation. This may be followed by the acquisition of genetic lesions in residual neuroectodermal progenitors that induce neoplastic transformation. Further, the inappropriate expression of neurotrophins and their cognate receptors in neuroectodermal progenitors and MBs may play a key role in the induction and progression of MBs. To gain insights into the initiation and progression of these common pediatric brain neoplasms, and to identify molecular defects that interrupt normal developmental events that might prevent neuroectodermal progenitor cells from exiting the cell cycle and terminally differentiating into neurons or undergoing cell death, we plan to examine the relationship between cell death, proliferation and neuronal differentiation in authentic human MBs and PNETs as well as in cell lines and transgenic mouse models of these tumors. We also will characterize the neurotrophin receptors expressed in the normal developing cerebellum, as well as in human MBs and human MR-derived cell lines. This information will then be used to design strategies to induce neuronal differentiation or cell death in MB cell lines by engineering these cell lines to express neurotrophin receptors and to respond to their cognate neurotrophins. These studies are unique in that they extend from the assessment of human biopsy samples to the analysis of cell culture and animal models of MBs and PNBTs. Taken together, the studies will provide novel and important insights into key processes (i.e. cell death, proliferation, differentiation) that are central to tumor initiation and progression. These studies also will clarify the role that neurotrophins play in the emergence and progression of MBs and PNBTs. Insights into these basic biological processes could set the stage for the development of novel gene therapies for MBs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA036245-12A1
Application #
2089071
Study Section
Pathology A Study Section (PTHA)
Project Start
1983-12-01
Project End
1999-12-31
Budget Start
1995-04-15
Budget End
1995-12-31
Support Year
12
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Fung, Kar-Ming; Rorke, Lucy B; Giasson, Benoit et al. (2003) Expression of alpha-, beta-, and gamma-synuclein in glial tumors and medulloblastomas. Acta Neuropathol (Berl) 106:167-75
Janss, A J; Maity, A; Tang, C B et al. (2001) Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin. Neuro Oncol 3:11-21
Thomson, J A; Marshall, V S; Trojanowski, J Q (1998) Neural differentiation of rhesus embryonic stem cells. APMIS 106:149-56;discussion 156-7
Lasner, T M; Tal-Singer, R; Kesari, S et al. (1998) Toxicity and neuronal infection of a HSV-1 ICP34.5 mutant in nude mice. J Neurovirol 4:100-5
Kesari, S; Lasner, T M; Balsara, K R et al. (1998) A neuroattenuated ICP34.5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system. J Gen Virol 79 ( Pt 3):525-36
Janss, A J; Levow, C; Bernhard, E J et al. (1998) Caffeine and staurosporine enhance the cytotoxicity of cisplatin and camptothecin in human brain tumor cell lines. Exp Cell Res 243:29-38
Janss, A J; Cnaan, A; Zhao, H et al. (1998) Synergistic cytotoxicity of topoisomerase I inhibitors with alkylating agents and etoposide in human brain tumor cell lines. Anticancer Drugs 9:641-52
Biegel, J A; Janss, A J; Raffel, C et al. (1997) Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin Cancer Res 3:473-8
Lasner, T M; Kesari, S; Brown, S M et al. (1996) Therapy of a murine model of pediatric brain tumors using a herpes simplex virus type-1 ICP34.5 mutant and demonstration of viral replication within the CNS. J Neuropathol Exp Neurol 55:1259-69
Kesari, S; Lee, V M; Brown, S M et al. (1996) Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1. J Neurosci 16:5644-53

Showing the most recent 10 out of 69 publications