Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA055079-03
Application #
2096325
Study Section
Cellular Biology and Physiology Subcommittee 1 (CBY)
Project Start
1994-06-21
Project End
1998-05-31
Budget Start
1996-06-01
Budget End
1998-05-31
Support Year
3
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Tennessee Health Science Center
Department
Pathology
Type
Schools of Medicine
DUNS #
941884009
City
Memphis
State
TN
Country
United States
Zip Code
38163
Datta, Abhishek; Nag, Alo; Pan, Wei et al. (2004) Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J Biol Chem 279:36698-707
Sandoval, Raudel; Xue, Jiaping; Pilkinton, Mark et al. (2004) Different requirements for the cytostatic and apoptotic effects of type I interferons. Induction of apoptosis requires ARF but not p53 in osteosarcoma cell lines. J Biol Chem 279:32275-80
Usacheva, Anna; Tian, Xinyong; Sandoval, Raudel et al. (2003) The WD motif-containing protein RACK-1 functions as a scaffold protein within the type I IFN receptor-signaling complex. J Immunol 171:2989-94
Prejean, C; Sarma, T; Kurnasov, O et al. (2001) Phosphatidylinositol 3-kinase confers resistance to encephalomyocarditis and herpes simplex virus-induced cell death through the activation of distinct downstream effectors. J Immunol 167:4553-9
Croze, E; Usacheva, A; Asarnow, D et al. (2000) Receptor for activated C-kinase (RACK-1), a WD motif-containing protein, specifically associates with the human type I IFN receptor. J Immunol 165:5127-32
Prejean, C; Colamonici, O R (2000) Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol 10:83-92
Russell-Harde, D; Wagner, T C; Rani, M R et al. (2000) Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells. J Biol Chem 275:23981-5
Domanski, P; Nadeau, O W; Platanias, L C et al. (1998) Differential use of the betaL subunit of the type I interferon (IFN) receptor determines signaling specificity for IFNalpha2 and IFNbeta. J Biol Chem 273:3144-7
Domanski, P; Fish, E; Nadeau, O W et al. (1997) A region of the beta subunit of the interferon alpha receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state. J Biol Chem 272:26388-93
Platanias, L C; Uddin, S; Domanski, P et al. (1996) Differences in interferon alpha and beta signaling. Interferon beta selectively induces the interaction of the alpha and betaL subunits of the type I interferon receptor. J Biol Chem 271:23630-3

Showing the most recent 10 out of 17 publications