The initiating molecular events in the most common types of thyroid cancer frequently involve chromosomal translocations, in contrast to other solid tumor types in which such events are rare. The RET/PTC rearranged oncogene accounts for the majority of radiation-induced papillary thyroid cancer (PTC) and up to 50% of sporadic PTC. An analogous chromosomal rearrangement occurs frequently (30-60%) in follicular thyroid cancer (FTC). This rearrangement involves a t(2;3)(q 13;p25) translocation, which fuses the thyroid specific transcription factor pax8 gene (chromosome 2) and the PPARgamma receptor gene (chromosome 3), resulting in the expression of a fusion protein, designated PPFP. PPFP contains a partial length pax8 and a full-length PPARgamma receptor, which is expressed under the control of the pax8 promoter in a thyroidspecific fashion. We have confirmed that almost 60% of FTC express PPFP. We have also shown that PPFP can transform Nthy-ori 3-1 thyroid cells in vitro, causing increased cell growth, decreased apoptosis, and anchorage-independent growth. PPFP also transforms NIH 3T3 cells. The inhibition of apoptosis is due in part to down-regulation of TRAIL-R2. Our findings also strongly suggest that the changes in growth and apoptosis are mediated by inhibition of wild-type PPARgamma. These data suggest that PPFP is an oncoprotein that functions in FTC tumorigenesis. In the current studies we will study the ability of PPFP to transform thyroctes in an in vivo mouse knockin model, designed to recapitulate all the genetic features of the human disease (Aim 1).
In Aim 2 we will study the mechanism of PPFP's dominant negative inhibition of PPARgamma. Finally, in Aim 3 we will identify the downstream PPARgamma-dependent effector pathways that mediate PPFP's transforming properties. These studies will test the following hypotheses: (1) PPFP is an oncoprotein, resulting from chromosomal rearrangements unique to FTC, and is sufficient to transform thyroid folliciular cells in vivo. (2) PPFP is involved in the early stages of FTC tumorigenesis. (3) PPFP acts solely through dominant negative inhibition of PPARgamma. (4) The inhibitory effects of PPFP can be modulated by PPARgamma and RXR Iigand binding. (5) PPFP alters multiple PARgamma-regulated transcription pathways, which alter growth control and/or apoptosis.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Perry, Mary Ellen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Jovanovic, Lidija; Delahunt, Brett; McIver, Bryan et al. (2010) Distinct genetic changes characterise multifocality and diverse histological subtypes in papillary thyroid carcinoma. Pathology 42:524-33
Eberhardt, Norman L; Grebe, Stefan K G; McIver, Bryan et al. (2010) The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 321:50-6
Algeciras-Schimnich, Alicia; Milosevic, Dragana; McIver, Bryan et al. (2010) Evaluation of the PAX8/PPARG translocation in follicular thyroid cancer with a 4-color reverse-transcription PCR assay and automated high-resolution fragment analysis. Clin Chem 56:391-8
Reddi, H V; Madde, P; Marlow, L A et al. (2010) Expression of the PAX8/PPAR? Fusion Protein Is Associated with Decreased Neovascularization In Vivo: Impact on Tumorigenesis and Disease Prognosis. Genes Cancer 1:480-492
Algeciras-Schimnich, Alicia; Preissner, Carol M; Theobald, J Paul et al. (2009) Procalcitonin: a marker for the diagnosis and follow-up of patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 94:861-8
Algeciras-Schimnich, Alicia; Preissner, Carol M; Young Jr, William F et al. (2008) Plasma chromogranin A or urine fractionated metanephrines follow-up testing improves the diagnostic accuracy of plasma fractionated metanephrines for pheochromocytoma. J Clin Endocrinol Metab 93:91-5
Reddi, H V; Madde, P; Reichert-Eberhardt, A J et al. (2008) ONYX-411, a conditionally replicative oncolytic adenovirus, induces cell death in anaplastic thyroid carcinoma cell lines and suppresses the growth of xenograft tumors in nude mice. Cancer Gene Ther 15:750-7
Jovanovic, L; Delahunt, B; McIver, B et al. (2008) Most multifocal papillary thyroid carcinomas acquire genetic and morphotype diversity through subclonal evolution following the intra-glandular spread of the initial neoplastic clone. J Pathol 215:145-54
Snozek, Christine L H; Chambers, Eugene P; Reading, Carl C et al. (2007) Serum thyroglobulin, high-resolution ultrasound, and lymph node thyroglobulin in diagnosis of differentiated thyroid carcinoma nodal metastases. J Clin Endocrinol Metab 92:4278-81
Reddi, Honey V; McIver, Bryan; Grebe, Stefan K G et al. (2007) The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology 148:932-5

Showing the most recent 10 out of 17 publications