Natural products have made enormous contributions to human health. The search for new lead compounds from natural sources continues to be a crucial element in modern anticancer drug discovery. Our long-term goal is to discover anticancer drugs that act by novel mechanisms from plant- and lichen-associated fungi of the Sonoran desert, thereby providing further support for our hypothesis that organisms living in association with one another in this unique environment elaborate a relatively unexplored repertoire of potent bioactive compounds with which to mediate their interactions and enhance their survival.
The specific aims of this interdisciplinary and inter-institutional project are to: 1. expand our unique bio-resource of Sonoran desert plant- and lichen-associated fungi and optimize biosynthetic potential of 500 selected fungal strains and prepare 2,500 extracts for evaluation;2. screen extracts for anticancer activity using cell-based biological and molecular approaches including: (a) an assay established during our previous grant period and recently modified to detect compounds capable of heat shock induction and inhibition of heat shock induction, followed by assays for direct interaction with Hsp90 including luciferase-refolding and binding assays for compounds isolated using the heat shock induction assay;(c) an assay for inhibitors of cell motility at sub-cytotoxic concentrations, and (d) a conventional dye reduction assay for inhibition of proliferation/survival based on five sentinel cancer cell lines to avoid the discovery of general cytotoxic agents;3. dereplicate active extracts, culture on large-scale up to five promising fungal strains per year and subject their extracts to bioassay-guided fractionation to isolate and characterize bioactive compounds;and 4. define molecular mechanisms of action using genomic and proteomic approaches for the most promising compounds based on their activity, structural novelty, and potency. We expect that the most interesting compounds will serve as leads for further optimization in the development of novel anticancer agents with unique mechanisms of action. At a more basic scientific level, however, the innovative chemical biology approach we propose should help define the mechanisms by which (a) chaperones such as Hsp90 facilitate oncogenesis, and (b) small-molecules inhibit cancer cell migration involved in invasion and metastasis, leading to enhancement of our overall ability to prevent and cure cancers, and therefore have a great impact on public health.

Public Health Relevance

This project proposes to discover anticancer drugs that act by novel mechanisms from hitherto unexploited natural sources, the outcome of which will lead to enhancement of our overall ability to prevent and cure cancers, and therefore have a great impact on public health.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
4R01CA090265-08
Application #
8193083
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Fu, Yali
Project Start
2009-06-04
Project End
2013-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
8
Fiscal Year
2012
Total Cost
$263,534
Indirect Cost
$88,916
Name
University of Arizona
Department
Miscellaneous
Type
Schools of Earth Sciences/Natur
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Luo, Jian-Guang; Xu, Ya-Ming; Sandberg, Dustin C et al. (2017) Montagnuphilones A-G, Azaphilones from Montagnulaceae sp. DM0194, a Fungal Endophyte of Submerged Roots of Persicaria amphibia. J Nat Prod 80:76-81
Gubiani, Juliana R; Wijeratne, E M Kithsiri; Shi, Taoda et al. (2017) An epigenetic modifier induces production of (10'S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg Med Chem 25:1860-1866
Bashyal, Bharat P; Wijeratne, E M Kithsiri; Tillotson, Joseph et al. (2017) Chlorinated Dehydrocurvularins and Alterperylenepoxide A from Alternaria sp. AST0039, a Fungal Endophyte of Astragalus lentiginosus. J Nat Prod 80:427-433
Wijeratne, E M Kithsiri; Gunaherath, G M Kamal B; Chapla, Vanessa M et al. (2016) Oxaspirol B with p97 Inhibitory Activity and Other Oxaspirols from Lecythophora sp. FL1375 and FL1031, Endolichenic Fungi Inhabiting Parmotrema tinctorum and Cladonia evansii. J Nat Prod 79:340-52
Xu, Ya-ming; Bunting, Daniel P; Liu, Manping X et al. (2016) 17?-Hydroxy-18-acetoxywithanolides from Aeroponically Grown Physalis crassifolia and Their Potent and Selective Cytotoxicity for Prostate Cancer Cells. J Nat Prod 79:821-30
Shekhar-Guturja, Tanvi; Gunaherath, G M Kamal B; Wijeratne, E M Kithsiri et al. (2016) Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat Chem Biol 12:867-75
Bai, Jing; Lu, Yuanyuan; Xu, Ya-ming et al. (2016) Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Org Lett 18:1262-5
Tillotson, Joseph; Bashyal, Bharat P; Kang, MinJin et al. (2016) Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Org Biomol Chem 14:5918-21
Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M et al. (2016) Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees. Microb Ecol 71:452-68
Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R et al. (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol 70:61-76

Showing the most recent 10 out of 48 publications