Colorectal carcinogenesis involves an accumulation of genetic and epigenetic changes that lead to alterations in normal colorectal epithelium, in situ carcinoma, and finally invasive and metastatic cancers. The loss of TGF-?-induced tumor suppressor function plays a pivotal role in this transition. Resistance to TGF-? in colorectal cancers can occur through a variety of mechanisms. However, inactivating mutations in the TGF-? type II receptor and selected TGF-? signal transducers (Smad2/4), and reduced expression of receptors are not enough (around 55%) to account for the high frequency of TGF-? insensitivity among carcinomas. It is still unknown how colon cancers become resistant to the antiproliferative responses to TGF-? in the other (approximately 45%) cases. We identified a novel WD-domain containing protein STRAP (Serine Threonine Kinase Receptor Associated Protein) that binds with both TGF-? receptor complex and Smad7, and that inhibits TGF-? signaling. We have reported that STRAP and Smad7 are upregulated in colorectal cancers, stimulate cell growth, induce anchorage-independent growth and enhance tumorigenicity. Our preliminary data suggest that STRAP induces epithelial-to-mesenchymal transition (EMT) by deregulating E-cadherin independently of TGF-?. STRAP also increases the expression of claudin1 and CyclinD1 that may contribute to cell proliferation. We have evidence that STRAP upregulates active MMP9 and fibronectin, and induces cell migration and invasion. In addition, we have demonstrated that stable expression of Smad7 in colon cancer cells induces metastasis. Based on the background information, we have developed the following hypotheses: Abrogation of TGF-?-induced growth inhibition by STRAP, and TGF-?-independent effects of STRAP including induction in cell proliferation, EMT, migration and invasion are critical for the acquisition of malignant phenotype in colorectal cancer. We further hypothesize that functional cooperation between STRAP and Smad7 in blocking TGF-? tumor suppressor function is involved in colon tumor progression and metastasis. These hypotheses will be tested by following specific aims: 1) Determine the mechanism by which STRAP promotes epithelial-to-mesenchymal transition (EMT). 2) Determine the TGF-?-dependent and -independent mechanism of STRAP-regulation of cancer cell proliferation, migration and invasion. 3) Determine how functional cooperation between STRAP and Smad7 contributes to colon tumor metastasis and the mechanism of upregulation of STRAP in human colorectal cancer. The long-term objective of this study is to understand, at the molecular level, the mechanism by which colorectal tumors become resistant to TGF-? tumor suppressor effects. A better understanding of the regulators of EMT, migration, invasion and metastasis will help to improve drug development and treatment of colorectal cancer.

Public Health Relevance

The loss of transforming growth factor-? (TGF-?)-induced tumor suppressor function in tumors plays a pivotal role in the transition from normal colorectal epithelium, to in situ carcinoma, and finally invasive and metastatic colorectal cancer progression and metastasis. A better understanding of these mechanisms will help to improve drug development and treatment of this lethal disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
7R01CA095195-10
Application #
8539131
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Ault, Grace S
Project Start
2002-04-01
Project End
2014-01-31
Budget Start
2013-05-01
Budget End
2014-01-31
Support Year
10
Fiscal Year
2013
Total Cost
$216,883
Indirect Cost
$68,840
Name
University of Alabama Birmingham
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Zhang, Wanguang; Zhang, Bixiang; Vu, Trung et al. (2017) Molecular characterization of pro-metastatic functions of ?4-integrin in colorectal cancer. Oncotarget 8:92333-92345
Jin, Lin; Vu, Trung; Yuan, Guandou et al. (2017) STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res 77:5464-5478
Yuan, Guandou; Zhang, Bixiang; Yang, Shanzhong et al. (2016) Novel role of STRAP in progression and metastasis of colorectal cancer through Wnt/?-catenin signaling. Oncotarget 7:16023-37
Vu, Trung; Jin, Lin; Datta, Pran K (2016) Effect of Cigarette Smoking on Epithelial to Mesenchymal Transition (EMT) in Lung Cancer. J Clin Med 5:
Yang, Shanzhong; Cho, Yong-Jig; Jin, Lin et al. (2015) An epigenetic auto-feedback loop regulates TGF-? type II receptor expression and function in NSCLC. Oncotarget 6:33237-52
Jin, Lin; Datta, Pran K (2014) Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21(Cip1) by modulating the transcription factor Sp1. Cell Cycle 13:3909-20
Zhang, B; Zhang, B; Chen, X et al. (2014) Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br J Cancer 110:946-57
Datta, Raktima; Halder, Sunil K; Zhang, Binhao (2013) Role of TGF-? signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells. J Cancer Res Clin Oncol 139:563-72
Nagathihalli, Nagaraj S; Massion, Pierre P; Gonzalez, Adriana L et al. (2012) Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin. Mol Cancer Ther 11:2362-72
Samanta, Debangshu; Kaufman, Jacob; Carbone, David P et al. (2012) Long-term smoking mediated down-regulation of Smad3 induces resistance to carboplatin in non-small cell lung cancer. Neoplasia 14:644-55

Showing the most recent 10 out of 29 publications