Established tumors create a condition of immunologic unresponsiveness toward their own antigens (functional tolerance) which constitutes a major barrier to successful immunotherapy of cancer. New therapeutic strategies are needed that specifically target this important but poorly understood problem. One mechanism by which antigen-presenting cells (APCs) can inhibit T cell responses, and hence create tolerance, is through tryptophan catabolism via the enzyme indoleamine 2,3-dioxygenase (IDO). Malignant melanoma and other human tumors recruit large numbers of IDO-expressing APCs into tumor-draining lymph nodes. The applicants hypothesize that presentation of tumor-derived antigens by IDO expressing APCs contributes to the pathologic tolerance toward tumor antigens found in malignancy.
In Aim #1 the applicants will test the hypothesis that IDO-dependent mechanisms block the development of protective immune responses at the time of prophylactic immunization with tumor antigens. This will be accomplished by administration of the IDO-inhibitor drug 1-methyl-[D]-tryptophan to mice receiving immunization with irradiated B16F10 tumor cells or defined antigenic peptides, and by the use of antigen-pulsed dendritic cells from IDO-transgenic and IDO-knockout mice.
In Aim #2 the applicants will test the hypothesis that T cells encountering antigen in tumor-draining lymph nodes are forced into IDO-mediated cell-cycle arrest in mid-G1, with consequent failure of clonal expansion and inability to develop CTL activity. Using an established-tumor model, the applicants will combine 1-methyl-[D]-tryptophan with vaccination to test the hypothesis that IDO-dependent mechanisms inhibit T cell responses to therapeutic immunization. The proposed studies will provide insight into the role of IDO as a tolerogenic mechanism in the pathogenesis of malignancy, and will test the efficacy of 1-methyl-[D]-tryptophan as a therapeutic intervention designed to block this pathway.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA096651-03
Application #
6929049
Study Section
Experimental Therapeutics Subcommittee 1 (ET)
Program Officer
Yovandich, Jason L
Project Start
2003-09-30
Project End
2007-08-31
Budget Start
2005-09-01
Budget End
2006-08-31
Support Year
3
Fiscal Year
2005
Total Cost
$237,738
Indirect Cost
Name
Georgia Health Sciences University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Noonepalle, Satish K; Gu, Franklin; Lee, Eun-Joon et al. (2017) Promoter Methylation Modulates Indoleamine 2,3-Dioxygenase 1 Induction by Activated T Cells in Human Breast Cancers. Cancer Immunol Res 5:330-344
Munn, David H; Sharma, Madhav D; Johnson, Theodore S et al. (2017) IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment. Cancer Immunol Immunother 66:1049-1058
Hippen, K L; O'Connor, R S; Lemire, A M et al. (2017) In Vitro Induction of Human Regulatory T Cells Using Conditions of Low Tryptophan Plus Kynurenines. Am J Transplant 17:3098-3113
Munn, David H; Mellor, Andrew L (2016) IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol 37:193-207
Munn, David H; Bronte, Vincenzo (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1-6
Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang et al. (2016) IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 5:e1171445
Huang, Lei; Ou, Rong; Rabelo de Souza, Guilherme et al. (2016) Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase. PLoS Pathog 12:e1005615
Koehn, Brent H; Apostolova, Petya; Haverkamp, Jessica M et al. (2015) GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 126:1621-8
Sharma, Madhav D; Shinde, Rahul; McGaha, Tracy L et al. (2015) The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv 1:e1500845
Suryawanshi, Amol; Manoharan, Indumathi; Hong, Yuan et al. (2015) Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. J Immunol 194:3295-304

Showing the most recent 10 out of 44 publications