Forward genetic screening in the zebrafish affords an unparalleled opportunity to discover previously elusive tumor suppressor genes whose alteration leads to disruption of the developing peripheral sympathetic nervous system (PSNS) and ultimately to overt neuroblastoma (NB), a biologically enigmatic, often fatal tumor in young children. This proposal tests two linked hypotheses: (i) genome-wide ethylnitrosourea (ENU) mutagenesis screens in the zebrafish can be used to identify dominant and recessive mutations that cause a deficiency or abnormal distribution of the PSNS, implicating genes important in NB pathogenesis and normal PSNS development; and (ii) transgenic zebrafish overexpressing the human MYCN oncogene in the developing PSNS can be used to determine the role of MYCN amplification in aberrant sympathetic neuroblast proliferation, survival and differentiation. These transgenic fish can also be mated to fish carrying candidate NB tumor suppressor genes identified in the ENU screen, to define the genetic pathways that cooperate with MYCN overexpression to induce early onset neuroblastoma. The zebrafish tyrosine hydroxylase (zTH) gene has already been cloned for use as a PSNS developmental marker in these screens, and its specificity for cells of the PSNS lineage was demonstrated by RNA in situ analysis.
In Aim 1, mutant fish identified by in situ hybridization following ENU mutagenesis will be analyzed to determine the developmental stage at which the mutation occurred (neural crest vs. sympathetic neuroblast development). Next, the chromosomal location of each mutation will be mapped on the zebrafish genome, and examined for synteny with known regions of loss of heterozygosity (LOH) and deletion in human NB samples. Positional cloning will focus on genes most likely to have deleted or mutated counterparts in human NB.
In Aim 2, transgenic zebrafish lines will be generated by using the zebrafish tyrosine hydroxylase (TH) promoter to drive expression of human MYCN in sympathetic neuroblasts. These lines will then be analyzed for their predisposition toward spontaneous tumorigenesis and crossed to the mutants isolated in Aim 1, to identify the combinations of genetic lesions leading to accelerated NB formation. Mutant zebrafish lines that harbor mutations in homologues of human tumor suppressor genes should provide reliable animal models for elucidating the molecular pathways leading to NB. A long-range goal is to use these models as a starting point for second-generation modifier screens to identify suppressors and enhancers of the genes causing PSNS defects, which may then be exploited as targets for therapeutic interventions in human NB.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA104605-04
Application #
7194310
Study Section
Special Emphasis Panel (ZRG1-ONC (03))
Program Officer
Mietz, Judy
Project Start
2004-04-02
Project End
2009-02-28
Budget Start
2007-03-20
Budget End
2009-02-28
Support Year
4
Fiscal Year
2007
Total Cost
$332,386
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Zhu, Shizhen; Lee, Jeong-Soo; Guo, Feng et al. (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21:362-73
Stewart, Rodney A; Lee, Jeong-Soo; Lachnit, Martina et al. (2010) Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 100:127-52
Stewart, Rodney A; Sanda, Takaomi; Widlund, Hans R et al. (2010) Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 18:750-62
Langenau, D M; Keefe, M D; Storer, N Y et al. (2008) Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene 27:4242-8
Smolen, Gromoslaw A; Schott, Benjamin J; Stewart, Rodney A et al. (2007) A Rap GTPase interactor, RADIL, mediates migration of neural crest precursors. Genes Dev 21:2131-6
Stewart, Rodney A; Arduini, Brigitte L; Berghmans, Stephane et al. (2006) Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev Biol 292:174-88
Bagatell, Rochelle; Rumcheva, Pavlina; London, Wendy B et al. (2005) Outcomes of children with intermediate-risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy. J Clin Oncol 23:8819-27
Stewart, Rodney A; Look, A Thomas; Kanki, John P et al. (2004) Development of the peripheral sympathetic nervous system in zebrafish. Methods Cell Biol 76:237-60