Our laboratory has developed a completely new approach to generating an anticancer vaccine. Using a free solution isoelectric focusing (FS-IEF) technique we can efficiently enrich for multiple chaperone complexes from tumor lysates. It has been documented that vaccination with these chaperone rich cell lysates (CRCL) is more effective than immunization with purified individual chaperones (heat shock proteins, HSPs). The antigenicity of CRCL can be augmented further by loading them onto dendritic cells (DCs) resulting in protection against murine tumors even in the setting of pre-existing disease. In addition to their antigen carrying capacities, CRCL have potent immunostimulatory effects on DCs. As adjuvants CRCL provide danger signals enhancing the immunogenicity of leukemia cells undergoing apoptosis following drug treatment. Chronic Myelogenous Leukemia (CML) is a useful model for the study of antigen specific immune responses to peptides chaperoned by CRCL. It is unique among leukemias in that the bcr-abl oncogene itself is a tumor antigen. Moreover, CML cells express other potential target antigens such as Proteinase-3 and Wilms' tumor protein (WT1). The goal of this proposal is to generate sufficiently strong pre-clinical data to move CRCL vaccines into the clinical setting. Our laboratory intends to continue studies in the 12B1 murine CML model in order to understand further the mechanisms of action of CRCL vaccines. In parallel, in vitro studies will examine the effects of human CML-derived CRCL on human cells in order to establish efficacy and safety. The following specific aims are proposed. 1) Characterize the peptide antigen repertoire of CRCL vaccine derived from 12B1 murine leukemia. 2) Study the in vivo synergistic effects of combining CRCL vaccine/adjuvant with STI-571, a tyrosine kinase inhibitor that induces apoptosis in murine 12B1 bcr-abl+ cells. 3) Biochemically characterize human CML-derived CRCL. 4) Evaluate the effects of human CML-derived CRCL on human DCs and examine the potential of CRCL-pulsed DCs to generate leukemia specific CTLs. The successful completion of these aims may result in the use of CRCL as an effective vaccine against CML, a disease in which immunotherapy has already shown promise.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA104926-02
Application #
6858586
Study Section
Experimental Therapeutics Subcommittee 1 (ET)
Program Officer
Yovandich, Jason L
Project Start
2004-03-01
Project End
2008-02-29
Budget Start
2005-03-01
Budget End
2006-02-28
Support Year
2
Fiscal Year
2005
Total Cost
$277,673
Indirect Cost
Name
University of Arizona
Department
Pediatrics
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Zeng, Yi; Hahn, Seongmin; Stokes, Jessica et al. (2017) Pak2 regulates myeloid-derived suppressor cell development in mice. Blood Adv 1:1923-1933
Stokes, Jessica; Hoffman, Emely A; Zeng, Yi et al. (2016) Post-transplant bendamustine reduces GvHD while preserving GvL in experimental haploidentical bone marrow transplantation. Br J Haematol 174:102-16
Zeng, Y; Stokes, J; Hahn, S et al. (2014) Activated MHC-mismatched T helper-1 lymphocyte infusion enhances GvL with limited GvHD. Bone Marrow Transplant 49:1076-83
Hanke, Neale T; LaCasse, Collin J; Larmonier, Claire B et al. (2014) PIAS1 and STAT-3 impair the tumoricidal potential of IFN-?-stimulated mouse dendritic cells generated with IL-15. Eur J Immunol 44:2489-2499
Alizadeh, Darya; Trad, Malika; Hanke, Neale T et al. (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74:104-18
Alizadeh, Darya; Larmonier, Nicolas (2014) Chemotherapeutic targeting of cancer-induced immunosuppressive cells. Cancer Res 74:2663-8
Alizadeh, Darya; Katsanis, Emmanuel; Larmonier, Nicolas (2013) The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol 2013:957878
Graner, Michael W; Romanoski, Angela; Katsanis, Emmanuel (2013) The 'peptidome' of tumour-derived chaperone-rich cell lysate anti-cancer vaccines reveals potential tumour antigens that stimulate tumour immunity. Int J Hyperthermia 29:380-9
Hanke, Neale; Alizadeh, Darya; Katsanis, Emmanuel et al. (2013) Dendritic cell tumor killing activity and its potential applications in cancer immunotherapy. Crit Rev Immunol 33:1-21
Centuori, Sara M; Trad, Malika; LaCasse, Collin J et al. (2012) Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-?-induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25-FoxP3- T cells. J Leukoc Biol 92:987-97

Showing the most recent 10 out of 28 publications