Over the last decade, work from a number of laboratories has established that mammalian cells depend on growth factor-dependent signaling to maintain their viability. We have demonstrated that this is true even for cells that lack the ability to initiate their own demise through the intrinsic apoptotic pathway. This finding led us to hypothesize that the essential function of survival signaling is to direct the cell to take up and metabolize sufficient nutrients to maintain mitochondrial integrity and cellular ATP production. The ability of cancer cells to survive in the absence of growth factor signaling depends on the cells acquiring mutations that stimulate sufficient nutrient uptake and metabolism to maintain cellular bioenergetics. Such signaling renders a cancer cell resistant to cell death by either apoptosis or necrosis. In the preceding five years of this grant, we established that Akt activation promotes cell survival by stimulating glucose uptake and metabolism. As a result, Akt-transformed cells become addicted to glycolytic metabolism for the support of ATP production. In addition, we have defined that glutamine represents a second essential metabolic substrate required for cell proliferation of transformed cells. In contrast to glucose, glutamine uptake and metabolism is not regulated by Akt-dependent signal transduction. In the ensuing five years, we plan to further investigate the regulation of glucose and/or glutamine uptake in normal and transformed cells. We believe a more complete characterization of the essential role of these nutrients in cancer cell growth and survival may lead to the development of new and safer cancer therapies.
Three Specific Aims are envisioned. We will: 1) Examine whether Akt-induced reprogramming of glucose metabolism can be exploited to selectively impair cancer cell growth and/or survival. 2) Define the molecular determinants of the glutamine dependence exhibited by some transformed cells. 3) Investigate the signaling pathways that can induce a transition from glucose-dependent mitochondrial metabolism to a glutamine-dependent mitochondrial metabolism during growth of normal and/or transformed cells.
Mammalian cells depend on extracellular signals to direct their nutrient uptake and metabolism. Recent evidence suggests that distinct oncogenic mutations control the cellular metabolism of glucose and glutamine, the two major nutrients used by cancer cells to fuel their growth and proliferation. This project seeks to determine whether oncogenic reprogramming of metabolism can be exploited to develop new cancer therapeutic strategies.
Olejniczak, Scott H; La Rocca, Gaspare; Radler, Megan R et al. (2016) Coordinated Regulation of Cap-Dependent Translation and MicroRNA Function by Convergent Signaling Pathways. Mol Cell Biol 36:2360-73 |
Carey, Bryce W; Finley, Lydia W S; Cross, Justin R et al. (2015) Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-6 |
La Rocca, Gaspare; Olejniczak, Scott H; González, Alvaro J et al. (2015) In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A 112:767-72 |
Ye, Jiangbin; Palm, Wilhelm; Peng, Min et al. (2015) GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29:2331-6 |
Jiang, Xuejun; Overholtzer, Michael; Thompson, Craig B (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125:47-54 |
Zhang, Ji; Fan, Jing; Venneti, Sriram et al. (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56:205-218 |
Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J et al. (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298-302 |
Cheong, Heesun; Wu, Junmin; Gonzales, Linda K et al. (2014) Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 10:45-56 |
Ye, Jiangbin; Fan, Jing; Venneti, Sriram et al. (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406-17 |
Kamphorst, Jurre J; Cross, Justin R; Fan, Jing et al. (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A 110:8882-7 |
Showing the most recent 10 out of 43 publications