Inappropriate activation/inactivation of key signals that control cell survival after genotoxic insult can contribute to autonomous growth and neoplastic transformation. An initial consequence of genotoxic injury is cell cycle checkpoint arrest but genotoxicity may also activate cell death pathways of apoptosis or terminal growth arrest. Cellular survival responses to genotoxic insult may produce intrinsic death-resistance; such a selective growth advantage may allow for emergence of a transformed phenotype. Certain forms of hexavalent chromium [(Cr(VI)] are known human respiratory carcinogens that can be employed as useful genotoxic tools with relevant toxicological importance. Our preliminary studies suggest that maintenance of protein tyrosine phosphorylation, which is coincident with AKT activation, overrides Cr-induced growth arrest and enhances clonogenic survival. Constitutive AKT activation is known to play an important role in carcinogenesis. Therefore, the overall objective of this proposal is to elucidate the coordinate signaling events that mediate cell fate determination and survival after genotoxic insult. The dual overarching hypotheses of the proposed studies are that: 1) AKT activation shifts the balance of cell fates, toward survival, after Cr(Vl) genotoxic insult; and 2) AKT activation in the face of Cr(Vl) genotoxic insult increases genomic instability. To test these hypotheses, we will employ molecular, pharmacological and genetic approaches, by using relevant model systems of human diploid lung fibroblasts (HLF), and human large airway epithelial cells (HLAE) and studying the involvement of key signaling components of the AKT pathway. The molecular circuitry of the AKT effect will be delineated in Aim 1, and the consequences of an AKT-induced """"""""override"""""""" of the genotoxin-elicited program of cell death will be investigated in Aim 2.
Aim 3 will identify the role of AKT in resistance to Cr(Vl)-induced clonogenic lethality in a subclonal population of cells with acquired resistance to Cr- induced clonogenic death. We will use soluble Na2CrO4 at a range of concentrations relevant to human exposure, and for which the DNA adduct frequencies and genotoxic lesions are well documented. Results of the proposed studies will identify molecular mechanism(s) that confer a growth advantage to cells after genotoxic insult, and add new insights to the understanding of Cr(Vl)-induced lung carcinogenesis, while addressing a need for sensitive and specific molecular indices that can be correlated with exposure to carcinogenic agents, as well as with their cancer incidence. Delineation of the molecular circuitry involved in AKT survival signaling may have the added benefit of identifying molecular targets for rational drug design in anti-cancer therapy.
Showing the most recent 10 out of 13 publications