The majority of human pancreatic cancer is presented as pancreatic ductal adenocarcinoma (PDA). Although we have increased our understanding of pancreatic cancer (PC) genetics in the past two decades, the 5-year survival of PC patients remains at 5%. Gaining a better understanding of metastasis and developing more effective treatments are two major challenges for pancreatic cancer researchers. Oncogene KRAS and tumor-suppressor genes p16 and SMAD4 are frequently mutated in human PDA. Our studies will focus on the roles of these 3 genes in pancreatic cancer progression and metastasis and their feasibility as drug targets. Based on the genetics of PDA, we have developed a mouse model that harbors an oncogenic Kras and inactivated p16 in the pancreases (p16/Kras/Pdx1 mice). We have shown that p16/Kras/Pdx1 mice develop mPanIN (precancerous lesions similar to those observed in humans), invasive cancer (similar to PDA), and metastasis at 100%. Our data demonstrate that p16 inactivation and Kras activation work synergistically in promoting pancreatic progression and metastasis, beyond early tumorigenesis. The continual participation of p16 and Kras in pancreatic cancer progression supports them as valid therapeutic targets. In addition, we also demonstrated progressive loss of the wild-type Kras allele is associated with metastasis in both mice and humans, suggesting that the wild-type Kras might have been selectively inactivated because it was inhibiting metastasis.
In Aim 1, we will investigate if the wild-type Kras harbors tumor-suppressive functions by restoring or deleting the wild-type Kras allele in both human and murine pancreatic cancer cell lines and examine the impacts on cell proliferation and/or metastasis in vitro and in vivo. If wild-type Kras does have tumor- suppressive function, it would impact future drug design targeting Kras.
In Aim 2 we propose to generate an inducible p16 knock-in mouse line (p16KI). The ability to induce p16 expression temporally during pancreatic tumorigenesis in p16/Kras/Pdx1 mice will allow us to evaluate if restoration of p16 is a feasible therapeutic strategy in vivo. Finally in Aim 3, we wish to continue our efforts of generating a new mouse model that does not involved an engineered oncogenic Kras allele. A portion of human PDA does not harbor KRAS mutations. We propose to continue our characterization of the Smad4lox/lox;P48Cre/+;MT-TGFalpha mice, which has shown promising development of mPanIN, which will likely progress to PDA. This model will enable us to understand pancreatic tumorigenesis that does not involve mutated KRAS and to test EGFR targeted therapies. As cancer treatments move toward target therapies, it is more important for us to understand the genes and the pathways that we design to target. In addition to further our understandings of the roles of KRAS, p16, and SMAD4 in pancreatic cancer progression and metastasis, the success of this application will impact how we design KRAS target therapies, provide new insights to p16 replacement/restoration therapies and EGFR inhibitor treatments, and offers new mouse models for human pancreatic cancer research.

Public Health Relevance

Oncogene KRAS and tumor-suppressor genes p16 and SMAD4 are frequently mutated in human pancreatic cancer. Our studies will focus on the roles of these 3 genes in pancreatic cancer progression and metastasis and their feasibility as drug targets. These experiments will help us better understand the mechanism of metastasis and to develop more effective target therapies for pancreatic cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA109525-08
Application #
8249079
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Mohla, Suresh
Project Start
2004-09-01
Project End
2016-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
8
Fiscal Year
2012
Total Cost
$311,158
Indirect Cost
$117,656
Name
Columbia University (N.Y.)
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Yu, Chih-Chieh; Qiu, Wanglong; Juang, Caroline S et al. (2017) Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 384:86-93
García-Carracedo, Darío; Villaronga, Maria Ángeles; Álvarez-Teijeiro, Saúl et al. (2016) Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget 7:29780-93
Qiu, Wanglong; Tang, Sophia M; Lee, Sohyae et al. (2016) Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Gastroenterology 150:218-228.e12
Westphalen, C Benedikt; Takemoto, Yoshihiro; Tanaka, Takayuki et al. (2016) Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell 18:441-55
Garcia-Carracedo, Dario; Yu, Chih-Chieh; Akhavan, Nathan et al. (2015) Smad4 loss synergizes with TGF? overexpression in promoting pancreatic metaplasia, PanIN development, and fibrosis. PLoS One 10:e0120851
Qiu, Wanglong; Tong, Guo-Xia; Turk, Andrew T et al. (2014) Oncogenic PIK3CA mutation and dysregulation in human salivary duct carcinoma. Biomed Res Int 2014:810487
Garcia-Carracedo, Dario; Chen, Zong-Ming; Qiu, Wanglong et al. (2014) PIK3CA mutations in mucinous cystic neoplasms of the pancreas. Pancreas 43:245-9
Gu, Dongsheng; Liu, Hailan; Su, Gloria H et al. (2013) Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther 12:1038-48
Qiu, Wanglong; Su, Gloria H (2013) Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. Cancer Metastasis Rev 32:83-107
Garcia-Carracedo, Dario; Turk, Andrew T; Fine, Stuart A et al. (2013) Loss of PTEN expression is associated with poor prognosis in patients with intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 19:6830-41

Showing the most recent 10 out of 26 publications