Tobacco smoke is the major cause of lung cancer, the most common type of fatal cancer worldwide. A possible means by which tobacco smoke exerts its carcinogenic effect is the DNA damage produced by the generation of reactive oxygen species and the formation of DNA adducts. Since the majority of persons who smoke tobacco do not develop lung cancer, it is possible that those who do develop this disease have a relatively poor capacity to repair the DNA damage that results from smoking. In a nested case-control study, we plan to determine whether polymorphisms of enzymes involved in the repair of smoking-induced DNA damage, namely those from the base excision (BER) and nucleotide excision repair (NER) pathways, are associated with risk of lung cancer. We propose to genotype the functional single nucleotide polymorphisms (SNPs) as well as tagging SNPs of 25 DNA repair genes (a total of 331 polymorphisms), that have been resequenced by the Seattle Variation Discovery Resource for the Environmental Genome Project. The lung cancer cases (n = 900) and controls (n = 1800) for the proposed study will come from the participants in the Carotene and Retinol Efficacy Trial (CARET) of lung cancer prevention. Genotyping of cases and controls will utilize DNA extracted from frozen whole blood samples. Detailed quantitative information on smoking and dietary history (using a food frequency questionnaire), obtained prior to the diagnosis of lung cancer, is available through CARET records. Cases and controls will be compared with respect to the prevalence of putative """"""""high risk"""""""" genotypes, alone and in combination with other putative """"""""high risk"""""""" genotypes within each pathway and in the two pathways combined. Analyses will also examine whether inferred haplotypes and their combinations are associated with risk. We will assess whether associations differ by histologic subtypes and sex. Results will be interpreted with multiple comparisons taken into account. The proposed study has sufficient statistical power to identify interactions between some of the high-risk genotypes/haplotypes, and to investigate whether the risk associated with a particular genotype/haplotype varies by other risk factors, such as smoking intensity and recency, and dietary factors, such as intake of antioxidant-rich fruits and vegetables (e.g. Rosaceae fruits and Cruciferae vegetables), and food-derived nutrients (e.g. carotenoids, vitamin C, and vitamin E). ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA111703-03
Application #
7472529
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Ellison, Gary L
Project Start
2006-08-10
Project End
2010-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
3
Fiscal Year
2008
Total Cost
$514,881
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Grieshober, Laurie; Graw, Stefan; Barnett, Matt J et al. (2018) Methylation-derived Neutrophil-to-Lymphocyte Ratio and Lung Cancer Risk in Heavy Smokers. Cancer Prev Res (Phila) 11:727-734
Feng, Yun; Wang, Yanru; Liu, Hongliang et al. (2018) Novel genetic variants in the P38MAPK pathway gene ZAK and susceptibility to lung cancer. Mol Carcinog 57:216-224
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
Doherty, Jennifer A; Grieshober, Laurie; Houck, John R et al. (2018) Telomere Length and Lung Cancer Mortality among Heavy Smokers. Cancer Epidemiol Biomarkers Prev 27:829-837
Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James et al. (2018) Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 9:3927
Liu, Hongliang; Liu, Zhensheng; Wang, Yanru et al. (2017) Functional variants in DCAF4 associated with lung cancer risk in European populations. Carcinogenesis 38:541-551
Lohavanichbutr, Pawadee; Sakoda, Lori C; Amos, Christopher I et al. (2017) Common TDP1 Polymorphisms in Relation to Survival among Small Cell Lung Cancer Patients: A Multicenter Study from the International Lung Cancer Consortium. Clin Cancer Res 23:7550-7557
Feng, Yun; Wang, Yanru; Liu, Hongliang et al. (2017) Genetic variants of PTPN2 are associated with lung cancer risk: a re-analysis of eight GWASs in the TRICL-ILCCO consortium. Sci Rep 7:825
Pan, Yongchu; Liu, Hongliang; Wang, Yanru et al. (2017) Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs. Sci Rep 7:44634
Yin, Jieyun; Liu, Hongliang; Liu, Zhensheng et al. (2017) Pathway-analysis of published genome-wide association studies of lung cancer: A potential role for the CYP4F3 locus. Mol Carcinog 56:1663-1672

Showing the most recent 10 out of 22 publications