Solid tumors are characterized by an acidic and hypoxic microenvironment, and a disorganized and leaky microvasculature. These characteristics of cancers are associated with adverse clinical outcomes, likelihood of tumor recurrence and metastasis, and resistance to therapies. Biomedical imaging modalities to interrogate these features of the tumor microenvironment with minimal or no invasiveness are crucial to the fight against this disease, as they offer the potential for predicting outcome and following response to conventional and experimental anti-cancer therapies. This application proposes a strategy for developing contrast agents for Magnetic Resonance Imaging (MRI) which bind reversibly to circulating albumin in vivo. By modulating the affinity of these complexes of gadolinium for albumin, it is proposed in Specific Aim 1 to develop contrast agents which will enhance MRI images in a manner dependent on the local tissue redox status. This is significant because hypoxic regions in tumors hav e been associated with high concentrations of reducing species. The ability to enhance, on MRI images, tumor regions with high concentrations of reducing species would be a non-invasive means of assessing tumor hypoxi a.
In Specific Aim 2, we propose to exploit the binding affinity of these complexes for albumin to produce MRI contrast agents which tend to remain intravascular (""""""""blood-pool"""""""" contrast agents). Extravasation of albumin-bound gadolinium in tumor regions of high vascular permeability will highlight such areas on MRI images. This is significant because tumor regions with high microvascular permeability (leakiness) are associated with high levels of expression of Vascular Endothelial Growth Factor (VEGF), a potent angiogenic molecule. The ability to highlight leaky regions in tumors on MRI images would be a non-invasive means to identify actively angiogenic regions in a tumor. Continuous clearance of the unbound pool of gadolinium will minimize toxicity associated with excessively long in vivo lifetimes of the gadolinium. The redox-sensitive and blood-pool contrast agents developed in aims 1 and 2 will be validated against histological assays of tumor hypoxia and VEGF expression. The overall goal of this application is to develop Magnetic Resonance Iaging biomarm kers of pathologically significant characteristics of tumors, to aid in the selection of, and non-invasively follow response to, targeted therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA118359-05
Application #
7892339
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Zhang, Huiming
Project Start
2006-08-15
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2013-07-31
Support Year
5
Fiscal Year
2010
Total Cost
$208,202
Indirect Cost
Name
University of Arizona
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Raghunand, Natarajan; Scicinski, Jan; Guntle, Gerald P et al. (2017) Magnetic resonance imaging of RRx-001 pharmacodynamics in preclinical tumors. Oncotarget 8:102511-102520
Landowski, Terry H; Guntle, Gerald P; Zhao, Dezheng et al. (2016) Magnetic Resonance Imaging Identifies Differential Response to Pro-Oxidant Chemotherapy in a Xenograft Model. Transl Oncol 9:228-35
Malm, Scott W; Hanke, Neale T; Gill, Alexander et al. (2015) The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines. J Exp Clin Cancer Res 34:31
Jagadish, Bhumasamudram; Ozumerzifon, Tarik J; Roberts, Sue A et al. (2014) IMPROVED SYNTHESIS OF 10-(2-ALKYLAMINO-2-OXOETHYL)-1,4,7,10-TETRAAZACYCLODODECANE-1,4,7-TRIACETIC ACID DERIVATIVES BEARING ACID-SENSITIVE LINKERS. Synth Commun 44:
Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A et al. (2012) Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium. Transl Oncol 5:190-9
Jagadish, Bhumasamudram; Guntle, Gerald P; Zhao, Dezheng et al. (2012) Redox-active magnetic resonance imaging contrast agents: studies with thiol-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid derivatives. J Med Chem 55:10378-86
Jagadish, Bhumasamudram; Brickert-Albrecht, Gayle L; Nichol, Gary S et al. (2011) On the Synthesis of 1,4,7-Tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane. Tetrahedron Lett 52:2058-2061
Raghunand, Natarajan; Guntle, Gerald P; Gokhale, Vijay et al. (2010) Design, synthesis, and evaluation of 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging. J Med Chem 53:6747-57