Pancreatic ductal adenocarcinoma is the fourth most common cause of cancer-related mortality in the United States, accounting for nearly 31,000 deaths each year. The vast majority of patients present with locally advanced or unresectable disease, and currently available conventional therapeutic approaches have been minimally successful in ameliorating the dismal prognosis of this malignancy. Nanobiotechnology provides unprecedented opportunities for addressing many of the current pitfalls in the diagnosis and therapy of pancreatic cancer. The current proposal represents a multi-institutional platform partnership between groups with extensive expertise in nanomaterial synthesis and delivery, pancreatic cancer biology, and small animal imaging. Multifunctional hybrid ceramic-polymeric nanoparticles, specifically indium phosphide quantum dots (InP Q-DOTS) and organically modified silica (ORMOSIL) nanoparticles have been developed for comprehensive preclinical evaluation in pancreatic cancer models.
Specific Aim 1 of this proposal entails the synthesis of long-circulating (PEGylated), surface-functionalized Q-DOTS and dye-doped ORMOSIL nanoparticles incorporating PET probes (""""""""nanoPET""""""""), for improved imaging of early and metastatic pancreatic cancer in vivo.
Specific Aim 2 of this proposal entails synthesis of long-circulating, surface-functionalized ORMOSIL nanoparticles encapsulating the small molecule inhibitor rapamycin (nanorapamycin) for systemic drug delivery to pancreatic cancer. A systematic approach is proposed, including an """"""""optimization"""""""" phase comprised of in vitro experiments using human pancreatic cancer cell lines and in vivo studies using conventional subcutaneous xenografts; these studies will then lead into an """"""""application"""""""" phase utilizing two preclinical models that faithfully recapitulate human pancreatic cancer biology, including the development of intra-abdominal metastases: first, a novel KRAS-driven transgenic mouse model of pancreatic cancer and second, a spontaneously metastasizing orthotopic xenograft model of human pancreatic cancer established in athymic mice. It is anticipated that clinical translation of these """"""""smart"""""""" nanomaterials will lead to improved staging of pancreatic cancer at diagnosis, early detection in """"""""at risk"""""""" individuals, and more potent therapeutic benefits for patients with advanced disease. The long-term goal of this proposal remains improvement in patient outcome for a malignancy with near-uniform lethality.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA119397-03
Application #
7286094
Study Section
Special Emphasis Panel (ZCA1-SRRB-C (O1))
Program Officer
Grodzinski, Piotr
Project Start
2005-09-29
Project End
2010-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
3
Fiscal Year
2007
Total Cost
$643,395
Indirect Cost
Name
State University of New York at Buffalo
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Erogbogbo, Folarin; Liu, Xin; May, Jasmine L et al. (2013) Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells. Integr Biol (Camb) 5:144-50
Masood, Rizwan; Roy, Indrajit; Zu, Sutao et al. (2012) Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol (Camb) 4:132-41
Mahajan, Supriya D; Aalinkeel, Ravikumar; Reynolds, Jessica L et al. (2012) Suppression of MMP-9 expression in brain microvascular endothelial cells (BMVEC) using a gold nanorod (GNR)-siRNA nanoplex. Immunol Invest 41:337-55
Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L et al. (2012) Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483-9
Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine et al. (2012) Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. Nanoscale 4:5163-8
Erogbogbo, Folarin; Yong, Ken-Tye; Roy, Indrajit et al. (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413-23
Ding, Hong; Yong, Ken-Tye; Roy, Indrajit et al. (2011) Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. Nanotechnology 22:165101
Ding, Hong; Yong, Ken-Tye; Law, Wing-Chueng et al. (2011) Non-invasive tumor detection in small animals using novel functional Pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3:1813-22
Erogbogbo, Folarin; Tien, Chen-An; Chang, Ching-Wen et al. (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem 22:1081-8
Bonoiu, Adela C; Bergey, Earl J; Ding, Hong et al. (2011) Gold nanorod--siRNA induces efficient in vivo gene silencing in the rat hippocampus. Nanomedicine (Lond) 6:617-30

Showing the most recent 10 out of 39 publications