The long term goal of this grant is to elucidate the mechanism through which mutations of receptor protein tyrosine phosphatase PTPRT lead to the development of colorectal cancers. This proposal tests the hypothesis that mutations of PTPRT impair critical tumor suppression functions leading to accelerated tumor growth and/or tumor progression through disrupting cell-cell adhesion and that `signal transducer and activator of transcription 3'(STAT3) plays critical roles in PTPRT regulated tumor suppressor signaling pathways.
The first aim of this proposal will investigate whether tumor specific mutations of PTPRT impair growth inhibitory functions in culture cells and in athymic nude mice xenograft models.
The second aim will determine whether STAT3 acts as the critical mediator of PTPRT regulated cell signaling pathway that is important in tumor development.
The third aim will determine whether tumor-derived mutations in the extracellular domain of PTPRT affect cell-cell adhesion. This proposal builds upon our successful exploitation of a cancer genomic approach that systematically explored the potential roles of protein tyrosine phosphatases in the development of colorectal cancer. Our initial study identified six tyrosine phosphatase genes that are mutated in 26% of colorectal cancers, providing compelling evidence that tyrosine phosphatases play critical roles in the development of colorectal cancers. PTPRT is the most frequently mutated tyrosine phosphatase gene among the six genes and over-expression of PTPRT inhibits growth of colorectal cancer cells. Recent work in this laboratory has now shown that the extracellular domain of PTPRT mediates homophilic binding, suggesting that PTPRT, like its close homologues, may also mediate cell-cell adhesion and thus play a critical role in tumor progression, given the fact that many metastatic cancers lose their cell adhesion properties. Using an innovative proteomic approach, we also identified STAT3, which is consistently activated in many cancers, as a PTPRT substrate. These observations emphasize the importance of determining whether STAT3 is a critical mediator of PTPRT tumor suppressor signaling and how tumor specific mutations affect tumor growth and cell-cell adhesion. Relevance: The proposed study will expand our understanding of new factors that cause colon cancer. This focus on new targets underlying colon cancer should facilitate design of novel approaches to treatment of cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA127590-04
Application #
7882583
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Yassin, Rihab R,
Project Start
2007-09-28
Project End
2012-07-31
Budget Start
2010-08-06
Budget End
2011-07-31
Support Year
4
Fiscal Year
2010
Total Cost
$293,550
Indirect Cost
Name
Case Western Reserve University
Department
Genetics
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Hu, Xiao; He, Yanhua; Wu, Liping et al. (2017) Novel all-hydrocarbon stapled p110?[E545K] peptides as blockers of the oncogenic p110?[E545K]-IRS1 interaction. Bioorg Med Chem Lett 27:5446-5449
Zhao, Yiqing; Scott, Anthony; Zhang, Peng et al. (2017) Regulation of paxillin-p130-PI3K-AKT signaling axis by Src and PTPRT impacts colon tumorigenesis. Oncotarget 8:48782-48793
Feng, Xiujing; Hao, Yujun; Wang, Zhenghe (2016) Targeting glutamine metabolism in PIK3CA mutant colorectal cancers. Genes Dis 3:241-243
Peyser, Noah D; Wang, Lin; Zeng, Yan et al. (2016) STAT3 as a Chemoprevention Target in Carcinogen-Induced Head and Neck Squamous Cell Carcinoma. Cancer Prev Res (Phila) 9:657-63
Wang, Zhenghe; Li, Li; Guda, Kishore et al. (2016) Adverse Clinical Outcome Associated With Mutations That Typify African American Colorectal Cancers. J Natl Cancer Inst 108:
Hao, Yujun; Samuels, Yardena; Li, Qingling et al. (2016) Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun 7:11971
Zhao, S; Sedwick, D; Wang, Z (2015) Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34:3885-94
Song, Jing; Du, Zhanwen; Ravasz, Mate et al. (2015) A Protein Interaction between ?-Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer Cells. Mol Cancer Res 13:969-81
Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M (2015) How do oncoprotein mutations rewire protein-protein interaction networks? Expert Rev Proteomics 12:449-55
Zhang, Yongyou; Desai, Amar; Yang, Sung Yeun et al. (2015) TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 348:aaa2340

Showing the most recent 10 out of 40 publications