Recently, we described a sub-population of epithelial ovarian cancer (EOC) cells that express Myeloid Differentiation Protein 88 (MyD88). Further characterization, revealed additional differences at molecular level suggesting a potential classification of EOC cells into Type I and Type II EOC cells. In Type I, ligation of TLR-4, with LPS, induce significantly high levels of pro-inflammatory cytokines. Moreover, these cells are more resistant to TNF1 and paclitaxel-induced apoptosis, and produce cytokines in response to this agent. Furthermore, our studies also showed that the cytokines and chemokines secreted by Type I EOC cells has great impact on monocyte function. These characteristics are not observed in Type II EOC cells. Therefore, our central hypothesis is that upon recognition of signals through TLR, Type I EOC cells can release chemokines and cytokines that would """"""""educate"""""""" immune cells to perform tumor-supportive functions. Contrary to previous hypotheses explaining the presence of immune infiltrate in the tumor microenvironment as an anti-tumor immune response, we propose that cancer cells recognize their unique microenvironment and respond to it by recruiting and educating immune cells to produce cytokines and growth factors that will promote tumor survival. The objectives of this proposal are: 1) To understand the function of TLR/MyD88/NF:B pathway in tumor cells and its impact on immune cell regulation and function;and 2) To correlate tumor MyD88 expression and patient survival.
Our specific aims are as follows:
7 Aim 1. To determine the molecular mechanisms mediating the differential responses in Type I and II EOC cells 7 Aim 2. To characterize Type I EOC cell-induced immune cell differentiation.
7 Aim 3. To characterize the differential regulation of immune cells in vivo by Type I and II EOC cells.
7 Aim 4. To determine the correlation between tumor-MyD88 expression, cytokine profile and survival in EOC patients. The studies proposed in this application provide an alternative perspective on the interaction between cancer cells and immune cells. Our observation that the expression of TLRs, and more important the expression of MyD88 in ovarian cancer cells, mediating the production of cytokines, tumor resistance to chemotherapy and immune regulation, presents a new perspective in tumor immunology that will allow the adequate design of strategies to boost the immune system against the tumor.

Public Health Relevance

This proposal seeks to determine the impact of a functional TLR/MyD88/NFkB pathway on the capacity of tumor cells to regulate immune function and confer chemo-resistance. The characterization of the cross talk between EOC cells and immune cells, which predisposes to a pro-tumor environment, will aid in the development of new approaches to enhance tumor rejection and prevent immune-induced tumor progression. In addition, the confirmation that patients with MyD88-expressing tumors should not receive paclitaxel, because its administration can actually aid on tumor progression, will significantly change the current mode of management in patients with ovarian cancer and will aid in the development of """"""""personalized"""""""" therapy and longer patient survival.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA127913-04
Application #
8069352
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Howcroft, Thomas K
Project Start
2008-07-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
4
Fiscal Year
2011
Total Cost
$333,111
Indirect Cost
Name
Yale University
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Loughran, Allister J; Tuomanen, Elaine I (2016) Blood borne: bacterial components in mother's blood influence fetal development. Inflamm Cell Signal 3:
Yang-Hartwich, Y; Soteras, M G; Lin, Z P et al. (2015) p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34:3605-16
Alvero, Ayesha B; Montagna, Michele K; Sumi, Natalia J et al. (2014) Multiple blocks in the engagement of oxidative phosphorylation in putative ovarian cancer stem cells: implication for maintenance therapy with glycolysis inhibitors. Oncotarget 5:8703-15
Nuti, Sudhakar V; Mor, Gil; Li, Peiyao et al. (2014) TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis. Oncotarget 5:7260-71
Sumi, Natalia J; Lima, Eydis; Pizzonia, John et al. (2014) Murine model for non-invasive imaging to detect and monitor ovarian cancer recurrence. J Vis Exp :e51815
Yang-Hartwich, Yang; Gurrea-Soteras, Marta; Sumi, Natalia et al. (2014) Ovulation and extra-ovarian origin of ovarian cancer. Sci Rep 4:6116
Craveiro, Vinicius; Yang-Hartwich, Yang; Holmberg, Jennie C et al. (2013) Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment. Cancer Med 2:751-62
Mor, Gil; Alvero, Ayesha (2013) The duplicitous origin of ovarian cancer. Rambam Maimonides Med J 4:e0006
Yin, G; Alvero, A B; Craveiro, V et al. (2013) Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene 32:39-49
Joo, Won Duk; Visintin, Irene; Mor, Gil (2013) Targeted cancer therapy--are the days of systemic chemotherapy numbered? Maturitas 76:308-14

Showing the most recent 10 out of 26 publications