The long-term goal of this research is to develop ultra-sensitive magnetic resonance imaging (MRI) probes that can provide cancer-specific detection of lung tumors by MRI. MRI is a clinical imaging technique that has broad applications in non-invasive diagnosis and post-therapy assessment for cancer. Although Gd-DTPA (Magnevist.) and other small molecular weight agents work well for dynamic contrast enhancement MRI applications, these agents are not very sensitive (lower limit of detection is ~10-4 M) and therefore cannot be used for detecting specific biological markers in vivo. In this application, we will investigate the use of superparamagnetic polymeric micelles (SPPM) that are loaded with a cluster of magnetite nanoparticles for molecular imaging of lung cancer. This platform demonstrated ~20 pM sensitivity of detection by MRI that will be essential for diagnosing lung cancers. A novel class of lung cancer-targeting peptides (LCPs) identified from phage screening will be functionalized on the surface of SPPM to target lung cancer cells. The isolated peptides demonstrated remarkable binding affinities ( A combination of novel MRI imaging method and ultra-sensitive molecular probes will be developed to provide cell-specific characterization of lung tumors. This knowledge can facilitate timely intervention of lung cancer to achieve personalized medicine.Public Health Relevance
Showing the most recent 10 out of 20 publications