Inhibition of protein degradation is an emerging anti-cancer strategy. The proteasome inhibitor Bortezomib has been approved by FDA for treatment of multiple myeloma, and is being trialed in numerous cancers. However, the underlying molecular mechanisms remain elusive. Moreover, it has been unclear whether certain molecular signatures can be used to predict the outcome of proteasome inhibitor-based therapy. We recently reported that proteasome inhibitors can induce an intracellular aggregation and activation of caspase-8 and subsequent apoptosis. This caspase-8 activation is mediated by its association with a ubiquitin-binding protein SQSTM1/p62 and an autophagy-related protein microtubule-associated protein light chain 3 (LC3). These findings prompt us to hypothesize that there exists a previously uncharacterized cell death mechanism that involves protein aggregate formation and intracellular activation of caspase-8. Along this direction, our additional preliminary results show that p62 itself undergoes ubiquitination. This novel modification of p62 may play a critical function in mediating aggregate formation and apoptosis. We also reported that an endogenous serine/cysteine protease inhibitor SerpinB3 (also termed squamous cell carcinoma antigen 1, SCCA1) may function as a molecular signature for predicting efficacy with proteotoxicity-based anti-cancer therapy. SCCA1 is an intracellular serpin that inhibits lysosomal proteases. SCCA1 is believed to limit cellular damage resulting from unscheduled activation of lysosomal protease that is detrimental to the cell, hence may contribute to tumorigenesis and chemo-resistance. Studies including those recently from my laboratory have demonstrated that elevated SCCA1 expression is associated with poorer prognosis in numerous advanced human cancers such as squamous cell carcinomas of lung, head and neck, and esophagus, as well as hepatocellular carcinoma and breast carcinoma. Indeed, at the molecular level, we found that SCCA1 protects cells from lysosomal injury induced by DNA alkylating damage and oxidative stress. On the other hand, we also found that SCCA1 promotes apoptosis in response to proteotoxic stress. Therefore, SCCA1 on one hand may confer resistance to chemotherapy by protecting cells against lysosomal injury, on the other hand, it may sensitize cancer cells to proteotoxicity. This proposal is designed to understand the molecular mechanisms underlying the anti-tumor effect of proteasome inhibitors, and to determine whether certain molecular changes in cancer cells such as elevated expression of LC3 or SCCA1 can confer tumor cell sensitive to proteotoxic agents in vivo. We propose three molecularly and clinically related Specific Aims: 1) Characterize the activation of caspase-8 upon the inhibition of proteasome degradation. 2) Study the mechanisms through which p62 regulates aggregate formation and caspase-8 activation. 3) Examine the hypothesis that certain molecules such as LC3 and SCCA1 can sensitize tumors to proteotoxic agents in vivo. Accomplishing this project will have a general impact on the understanding of the molecular basis for proteotoxicity-based anti-cancer therapy, as well as on the physiological relevance of protein aggregates in many pathological conditions. At the clinical level, it may establish LC3 or SCCA1 as a molecular signature for suggesting treatment with proteotoxic agents.

Public Health Relevance

to Public Health Inhibition of protein degradation pathways is an emerging approach for treating human cancers. However, the underlying molecular mechanisms remain largely elusive. This project is designed to test a novel hypothesis that inhibition of protein degradation can lead to intracellular aggregation and activation of caspase-8, and subsequent apoptosis. The possibility that certain molecular changes can be explored as molecular signatures to predict the efficacy of proteotoxic treatment will also be explored.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA129536-07
Application #
8617809
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Arya, Suresh
Project Start
2007-07-01
Project End
2018-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Genetics
Type
Schools of Medicine
DUNS #
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Sun, Yu; Sheshadri, Namratha; Zong, Wei-Xing (2017) SERPINB3 and B4: From biochemistry to biology. Semin Cell Dev Biol 62:170-177
Klionsky, Daniel J (see original citation for additional authors) (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Jaber, Nadia; Mohd-Naim, Noor; Wang, Ziqing et al. (2016) Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 129:4424-4435
Pan, Ji-An; Sun, Yu; Jiang, Ya-Ping et al. (2016) TRIM21 Ubiquitylates SQSTM1/p62 and Suppresses Protein Sequestration to Regulate Redox Homeostasis. Mol Cell 61:720-733
Sun, Yu; Zong, Wei-Xing (2016) Cellular Apoptosis Assay of Breast Cancer. Methods Mol Biol 1406:139-49
Zong, Wei-Xing; Rabinowitz, Joshua D; White, Eileen (2016) Mitochondria and Cancer. Mol Cell 61:667-676
Naguib, Adam; Bencze, Gyula; Cho, Hyejin et al. (2015) PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 58:255-68
Bott, Alex J; Peng, I-Chen; Fan, Yongjun et al. (2015) Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation. Cell Metab 22:1068-77
Dou, Zhixun; Xu, Caiyue; Donahue, Greg et al. (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105-9
McKnight, Nicole C; Zhong, Yun; Wold, Mitchell S et al. (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10:e1004626

Showing the most recent 10 out of 36 publications