Patients with ulcerative colitis (UC) are at increased risk of developing colorectal cancer. A more complete understanding of the molecular basis of UC-cancers and their precursor dysplastic lesions will result in several important benefits. Specifically, novel molecular alterations will provide clues to pathways underlying UC-associated neoplastic transformation, leading to better disease models. These events may evolve into therapeutic targets for both the prevention and treatment of this sequela. Recent technical and scientific advances, particularly explosive growth in the field of microRNAs (miRs), now enable us to delve more deeply and broadly than ever previously possible into the molecular underpinnings of UCN. By leveraging these advances, we can now evaluate the involvement of miRs in UC-associated inflamed, dysplastic, and cancerous lesions by discovering unique alterations in the expression of miRs, defining their functional impact both in vitro and in vivo, and defining pathways by which their dysregulation may be carcinogenic. Hypothesis: We hypothesize that miR-dysregulation is involved in UC-associated neoplastic progression. To prove this hypothesis, we will pursue the following Specific Aims: 1) To identify tumor-suppressive miRs (ts-miRs) and oncogenic miRs (oncomiRs) that are involved in UCN. 1a) To identify miRs that are dysregulated at each UC- neoplastic stage using miR microarray-based comparisons of non-neoplastic mucosae from non-UC controls vs. UC-associated non-neoplastic mucosa, dysplasia, and carcinoma. 1b) To confirm dysregulation and epithelial cell localization of prioritized significantly upregulated and downregulated miRs at each UC- neoplastic stage in Aim 1a, using qRT-PCR in a larger sample cohort and in situ hybridization assays. 2) To determine the biologic impacts of prioritized candidate ts-miRs and oncomiRs in UC-associated neoplastic progression in vitro and in vivo. 2a) To test the biologic impacts of prioritized dysregulated miRs in vitro by transfecting either miR-mimics (for ts-miRs) or antagomiRs (for oncomiRs) into UCN-derived cell lines, followed by growth, proliferation, cell cycle, and apoptosis assays. 2b) To test the biologic effects of in vitro effective miRs (Aim 2a) in vivo by transfecting miR-mimics or antagomiRs into UCN cells and implanting the cells in nude mice. 3) Using a two-pronged approach, to discover and investigate pathways involving UCN- miRs and their putative cognate UCN-gene transcripts. 3a) Starting from candidate miRs, to discover their target gene transcripts by performing mass spectrometric screening of iTRAQ-labeled proteins extracted from UCN cells that have been transfected with candidate miR-mimics or antagomiRs. 3b) Starting from previously established UCN-related gene transcripts, to document binding of their 3'-UTRs to putative cognate in silico- selected miRs that are also dysregulated in UCNs, using luciferase expression vectors and Western blotting.

Public Health Relevance

The involvement of a unique set of microRNAs (miRs) in the development of ulcerative colitis-associated neoplastic lesions (UCNs) will be investigated. MiR microarray and quantitative reverse-transcriptase PCR (qRT-PCR) assays will establish miR dysregulation. In vitro and in vivo studies will be performed to determine the carcinogenic biologic effects of miRs dysregulated in UCNs, and in silico and in vitro methods will be used to show which messenger RNAs are targets of selected UCN-dysregulated miRs. Ultimately, the discovery and study of these carcinogenic mechanisms will establish a foundation for the future use of miR agonists and antagonists in the prevention and treatment of this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA133012-03
Application #
8107870
Study Section
Gastrointestinal Cell and Molecular Biology Study Section (GCMB)
Program Officer
Wagner, Paul D
Project Start
2009-09-11
Project End
2014-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
3
Fiscal Year
2011
Total Cost
$291,116
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Sun, Zhenguo; Ke, Xiquan; Salzberg, Steven L et al. (2017) The novel fusion transcript NR5A2-KLHL29FT is generated by an insertion at the KLHL29 locus. Cancer 123:1507-1515
Tang, Xiaowei; Wang, Yun; Fan, Zhining et al. (2016) Klotho: a tumor suppressor and modulator of the Wnt/?-catenin pathway in human hepatocellular carcinoma. Lab Invest 96:197-205
Robles, Ana I; Traverso, Giovanni; Zhang, Ming et al. (2016) Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers. Gastroenterology 150:931-43
Huang, B; Song, J H; Cheng, Y et al. (2016) Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene 35:4927-36
Yan, Rong; Zhu, Kun; Dang, Chengxue et al. (2016) Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget 7:38750-38761
Ke, Xiquan; Zhao, Yan; Lu, Xinlan et al. (2015) TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 6:32610-21
Cheng, Yulan; Kiess, Ana P; Herman, Joseph M et al. (2015) Phosphorus-32, a clinically available drug, inhibits cancer growth by inducing DNA double-strand breakage. PLoS One 10:e0128152
Joseph, Christine G; Hwang, Heejung; Jiao, Yuchen et al. (2014) Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Genes Chromosomes Cancer 53:15-24
Jin, Zhe; Wang, Liang; Zhang, Yuan et al. (2013) MAL hypermethylation is a tissue-specific event that correlates with MAL mRNA expression in esophageal carcinoma. Sci Rep 3:2838
Olaru, Alexandru V; Yamanaka, Sumitaka; Vazquez, Christine et al. (2013) MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis 19:471-80

Showing the most recent 10 out of 26 publications