Radioresistance markedly impairs the efficacy of radiotherapy and involves cell signal transduction pathways that prevent radiation-induced cell death. Proteins in the Bcl-2 family are central and dual regulators of apoptosis and autophagy, and members that inhibit apoptosis and/or autophagy, such as Bcl-2 and Mcl-1, are overexpressed in most of cancers and contribute to tumor initiation, progression and resistance to therapy. Through computational structure-based rational design and structure optimization, we have discovered and synthesized a series of small molecule inhibitors of Bcl-2/Mcl-1 (US Patent No.7,432,304 and pending), including (-)-gossypol and its more active derivatives such as apogossypolone (ApoG2). ApoG2 exhibits a much higher affinity for Mcl-1 at nanomolar level, and is 3-times more potent than (-)-gossypol in inhibiting prostate cancer cell growth, and 8-times less toxic than (-)-gossypol in mice. Both agents show potent therapeutic activity to overcome radiation-resistance in cancer cells with high levels of Bcl-2 and/or Mcl-1, but have minimal effect on normal cells. ApoG2 potently reduces Mcl-1 and increase BH3-only proteins Bim and NOXA, suggesting that targeting Mcl-1 may be a promising approach for radiosensitization of human prostate cancer with high levels of Mcl-1. Based upon our promising preliminary results, we propose to test two inter-related basic hypotheses: (1) Mcl-1 protein plays a critical role in radiation resistance of human prostate cancer cells with Mcl-1 overexpression;(2) Inhibition of Mcl-1 by the novel Mcl-1 inhibitors will overcome radioresistance and restore sensitivity of prostate cancer cells to ionizing radiation, potentially via upregulating Bim/Mcl-1 and/or NOXA/Mcl-1 ratio. We propose to investigate the radiosensitizing potential of Mcl-1 inhibitors and validate their molecular target(s) in human prostate cancer cells in vitro and in vivo, and to delineate the molecular mechanism(s) of action in the Mcl-1 inhibitors-induced radiosensitization. Our goal is to establish that Mcl-1 is a promising novel target for radiosensitization of cancer with Mcl-1-overexpression, with the ultimate goal to establish the molecular modulation of Mcl-1 as a novel approach for overcoming radiation resistance of human prostate cancer with high levels of Mcl-1. The success of this two-year project will provide important impetus to develop the molecular modulation of Mcl-1 as a novel approach for overcoming radiation resistance of human prostate cancer with high levels of Mcl-1. The combination of Mcl-1-targeted molecular therapy and conventional radiotherapy may become a promising strategy to enhance the efficacy of current cancer treatment.

Public Health Relevance

The aim of this proposal is to investigate the molecular modulation of Mcl-1 by our more potent small molecule Mcl-1 inhibitors as a novel adjuvant approach to overcoming radiation resistance of human prostate cancer with Mcl-1 over expression. In the clinic, continued treatment with potent Mcl-1 inhibitors throughout the cycles of chemo/radiotherapy may help to further reduce or eliminate the minimal residual disease, and thus may reduce the risk of prostate cancer local recurrence and advance. Therefore, the combination of Mcl-1- targeting molecular therapy and conventional radiotherapy may become a promising novel strategy to enhance the efficacy of current cancer treatment and ultimately improve the survival of prostate cancer patients with the locally advanced disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA134655-01A1
Application #
7729278
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Bernhard, Eric J
Project Start
2009-07-17
Project End
2011-06-30
Budget Start
2009-07-17
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$313,340
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Li, Ling; Hao, Xinbao; Qin, Jun et al. (2014) Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice. Gastroenterology 146:1108-18
Li, Ling; Tang, Wenhua; Wu, Xiaoqing et al. (2013) HAb18G/CD147 promotes pSTAT3-mediated pancreatic cancer development via CD44s. Clin Cancer Res 19:6703-15
Lian, J; Wu, X; He, F et al. (2011) A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 18:60-71
Wu, Xiaoqing; Li, Mingdong; Tang, Wenhua et al. (2011) Design, synthesis, and in vitro antitumor activity evaluation of novel 4-pyrrylamino quinazoline derivatives. Chem Biol Drug Des 78:932-40
Pan, Xinghua; Thompson, Rachel; Meng, Xiaojie et al. (2011) Tumor-targeted RNA-interference: functional non-viral nanovectors. Am J Cancer Res 1:25-42
Dai, Yao; Desano, Jeffrey; Qu, Yang et al. (2011) Natural IAP inhibitor Embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. Am J Cancer Res 1:128-43
Dai, Yao; Desano, Jeffrey; Tang, Wenhua et al. (2010) Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS One 5:e14153
Wu, Xiaoqing; Li, Mingdong; Qu, Yang et al. (2010) Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg Med Chem 18:3812-22
Lian, Jiqin; Karnak, David; Xu, Liang (2010) The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy 6:1201-3
Karnak, David; Xu, Liang (2010) Chemosensitization of prostate cancer by modulating Bcl-2 family proteins. Curr Drug Targets 11:699-707

Showing the most recent 10 out of 13 publications