One-carbon metabolism is a critical pathway in cancer epigenetics because it directs the methylation of DNA and RNA and is involved in DNA synthesis and repair. There is no good systemic marker of one-carbon metabolism status. Abnormal one-carbon metabolism may lead to genomic (global) hypomethylation in systemic blood DNA, which may predispose the development of neoplasia;if so, genomic methylation status in blood DNA may serve as a good systemic marker of one-carbon metabolism status. Several dietary factors including folate, alcohol, methionine, riboflavin, vitamins B6 and B12, choline, and betaine mediate or facilitate one-carbon metabolism pathway. We currently do not know the optimum balance of these multiple dietary factors to achieve maximum function in the pathway and to minimize cancer risk. Therefore, we propose to evaluate pre-diagnostic genomic methylation of leukocyte DNA in relation to colorectal cancer risk in large prospective studies and expect that individuals with reduced levels of genomic DNA methylation are at increased risk of colorectal cancer. We also propose to elucidate the associations between major plasma components of one-carbon metabolism (total folate, unmetabolized folic acid, 5-methyl-tetrahydrofolate, vitamins B6 and B12, cysteine, homocysteine, and methylene-tetrahydrofolate reductase gene) and genomic DNA methylation, to determine the role of each component in genomic DNA methylation and further validate the biological relevance of genomic methylation assessment in blood DNA. We finally propose to identify dietary predictors of genomic DNA hypomethylation, create a 'dietary methyl score', and examine the score in relation to colorectal adenoma/cancer risks. We hypothesize that the 'dietary methyl score'predicts risks of colorectal adenoma/cancer more strongly than the individual dietary predictors. We will also evaluate 'dietary methyl score'in relation to several molecular and epigenetic subtypes of colorectal cancer including tumors with LINE-1 hypomethylation, CpG island methylator phenotype (CIMP)-high, or microsatellite instability (MSI)- high. This application will take advantage of two large ongoing prospective follow-up studies of women and men with 666/1332 colorectal cancer cases/controls with pre-diagnostic blood samples for genomic methylation status of leukocyte DNA. We also expect to include 6,025 colorectal adenoma and 2,794 colorectal cancer cases to evaluate the relationships with 'dietary methyl score'. With several previously assessed plasma components of one-carbon metabolism and molecular subtypes of colorectal tumor, we are uniquely positioned to address these issues in an extremely time- and cost-effective manner. Our work will elucidate a new insight into how dietary factors and one-carbon metabolism affects the epigenetics of cancer in humans. Genomic methylation in leukocyte DNA can potentially serve as a diagnostic tool or target for cancer prevention because it is potentially modifiable. Dietary methyl score will help produce practical dietary guidelines for cancer prevention.

Public Health Relevance

Our study will evaluate the biological relevance of pre-diagnostic genomic methylation status of blood DNA as a measure of body's systemic methylation status and a predictor of cancer. The methylation status could be potentially utilized for early detection of cancer and a target for cancer prevention because it is potentially modifiable. Creation of 'dietary methyl score'will present the optimum balance of multiple dietary factors affecting one-carbon metabolism to reduce cancer risk and help produce practical dietary guidelines for cancer prevention.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Su, Joseph
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Yoon, Yeong Sook; Jung, Seungyoun; Zhang, Xuehong et al. (2016) Vitamin B2 intake and colorectal cancer risk; results from the Nurses' Health Study and the Health Professionals Follow-Up Study cohort. Int J Cancer 139:996-1008
Inamura, Kentaro; Song, Mingyang; Jung, Seungyoun et al. (2016) Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to KRAS Mutation Status. J Natl Cancer Inst 108:
Cho, Eunyoung; Zhang, Xuehong; Townsend, Mary K et al. (2015) Unmetabolized Folic Acid in Prediagnostic Plasma and the Risk of Colorectal Cancer. J Natl Cancer Inst 107:djv260
Jung, Seungyoun; Je, Youjin; Giovannucci, Edward L et al. (2015) Derivation and validation of homocysteine score in u.s. Men and women. J Nutr 145:96-104
Massa, Jennifer; Cho, Eunyoung; Orav, Endel J et al. (2014) Total calcium intake and colorectal adenoma in young women. Cancer Causes Control 25:451-60
Fink, Stephen P; Yamauchi, Mai; Nishihara, Reiko et al. (2014) Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med 6:233re2
Jung, Seungyoun; Qian, Zhi Rong; Yamauchi, Mai et al. (2014) Predicted 25(OH)D score and colorectal cancer risk according to vitamin D receptor expression. Cancer Epidemiol Biomarkers Prev 23:1628-37
Inamura, Kentaro; Yamauchi, Mai; Nishihara, Reiko et al. (2014) Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst 106:
Nan, Hongmei; Giovannucci, Edward L; Wu, Kana et al. (2013) Pre-diagnostic leukocyte genomic DNA methylation and the risk of colorectal cancer in women. PLoS One 8:e59455
Meng, Shasha; Zhang, Xuehong; Giovannucci, Edward L et al. (2013) No association between garlic intake and risk of colorectal cancer. Cancer Epidemiol 37:152-5

Showing the most recent 10 out of 11 publications