The spliceosome is an important emerging target for cancer therapy that has only recently been uncovered and remains to be significantly exploited. The development of highly selective anti-tumor agents continues to be a challenge in drug discovery and this fact has motivated researchers to search for new molecular targets that allow for the discovery of more selective anticancer agents than has been possible with compounds that inhibit many of the classic cancer targets. Recently, it was discovered that two unrelated natural products FR901464 (FR) and pladienolide (PD) both act by inhibition of the SF3b subunit of the spliceosome. Both of these natural products show activity in in vivo anti-tumor models. In particular, pladienolide and analogs have shown striking in vivo anti-tumor selectivity and efficacy, with a pronounced therapeutic window. In fact, a derivative of pladienolide B (E7107) has been advanced to Phase I human clinical trials. These natural products, and analogs derived from them, are quite complex and the synthesis of their analogs is quite demanding. It can readily be concluded that the discovery of more facile routes to active simplified compounds that work by modulation of the spliceosome is an important goal for the drug discovery community at large. We have recently reported the concise synthesis of novel highly stabilized synthetic analogs of FR that possess in vitro cytotoxicity IC50 values as low as 40-80 nM against multiple susceptible tumor lines and promising in vivo activity in a mouse tumor model (see Preliminary Results section). The overall long-term goal of this proposal is the development of a better understanding of spliceosome function, the development of new drugs for the treatment of human cancers that are most vulnerable to spliceosome modulation and elucidation of the mechanism of selective action of spliceosome modulators. We propose to develop both tool and optimized lead compounds capable of potent spliceosome modulation in vivo. We plan to accomplish this through exploration of the effects of our current active compounds on alternate splicing in tumors and through the refinement of our spliceosome modulators via multiple iterations of synthesis and in vitro testing of carefully designed new analogs, followed by several experimental cycles involving detailed investigations of the pharmacology of our lead compounds.

Public Health Relevance

Two highly complex natural products produced by certain bacterial species show striking selective toxicity to tumors and have recently been found to act by the inhibition of pre-mRNA splicing in tumor cells. Although the production of these natural products is a significant challenge they have been shown to be remarkably successful in pre-clinical studies. Workers in Webb Laboratory have recently successfully designed new readily prepared synthetic compounds that have anti-tumor activity similar to these natural products. These new synthetic compounds show potent activity against certain tumor lines that are associated with both adult and childhood cancer. One of the advantages of these synthetic compounds is that it is possible to tailor the structure of each compound so that they function better as drugs in humans and then to ultimately produce these new drugs economically in large quantities. These compounds may also be used to probe the mechanism of action of this class of inhibitors;this knowledge may be then in turn be used to develop even more selective compounds. This work has the potential for the initiation of a new generation of starting points in the discovery of numerous tailored drugs that target an even broader range of cancer types, with significantly reduced side-effects for pediatric patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA140474-06
Application #
8676694
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fu, Yali
Project Start
2010-07-16
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
6
Fiscal Year
2014
Total Cost
$364,562
Indirect Cost
$155,286
Name
Sri International
Department
Type
DUNS #
009232752
City
Menlo Park
State
CA
Country
United States
Zip Code
94025
Wu, Gang; Fan, Liying; Edmonson, Michael N et al. (2018) Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping. RNA 24:1056-1066
Fraile, Julia M; Manchado, Eusebio; Lujambio, Amaia et al. (2017) USP39 Deubiquitinase Is Essential for KRAS Oncogene-driven Cancer. J Biol Chem 292:4164-4175
Shirai, Cara Lunn; White, Brian S; Tripathi, Manorama et al. (2017) Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8:14060
Shi, Yihui; Park, Jaehyeon; Lagisetti, Chandraiah et al. (2017) A triple exon-skipping luciferase reporter assay identifies a new CLK inhibitor pharmacophore. Bioorg Med Chem Lett 27:406-412
Shi, Yihui; Joyner, Amanda S; Shadrick, William et al. (2015) Pharmacodynamic assays to facilitate preclinical and clinical development of pre-mRNA splicing modulatory drug candidates. Pharmacol Res Perspect 3:e00158
Hsu, Tiffany Y-T; Simon, Lukas M; Neill, Nicholas J et al. (2015) The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525:384-8
Xargay-Torrent, Sílvia; López-Guerra, Mónica; Rosich, Laia et al. (2015) The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 6:22734-49
Lagisetti, Chandraiah; Yermolina, Maria V; Sharma, Lalit Kumar et al. (2014) Pre-mRNA splicing-modulatory pharmacophores: the total synthesis of herboxidiene, a pladienolide-herboxidiene hybrid analog and related derivatives. ACS Chem Biol 9:643-8
Convertini, Paolo; Shen, Manli; Potter, Philip M et al. (2014) Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res 42:4947-61
Lagisetti, Chandraiah; Palacios, Gustavo; Goronga, Tinopiwa et al. (2013) Optimization of antitumor modulators of pre-mRNA splicing. J Med Chem 56:10033-44

Showing the most recent 10 out of 15 publications