Recent published and unpublished studies from our laboratory suggest aberrant expression of a novel transmembrane mucin, MUC13, in ovarian and pancreatic cancers. We have also shown that exogenous MUC13 expression enhances cellular motility, invasion, proliferation and tumorigenesis of ovarian and pancreatic cancer cell lines. These effects are associated with modulation of HER2 and p53 expression. As supported by our preliminary data, we propose that the overexpression of MUC13 contributes to the pathogenesis of pancreatic cancer. In this grant proposal, our objectives are to delineate the functional aspects of MUC13 mucin in pancreatic cancer. We hypothesize that the different domains of MUC13 execute specific functions in cancer cells and their suppression will diminish pancreatic cancer cell growth and tumorigenesis. Additionally, we hypothesize that the aberrant MUC13 expression operates as an oncoprotein via interaction/stabilization/activation of EGFRs (HER1, HER2) and suppression of p53. To test these hypotheses, we propose three specific aims. 1) To investigate the roles of different MUC13 domains in the function and the signaling pathways modulated by MUC13 in pancreatic cancer cells. 2) To investigate whether the effect of MUC13 on tumorigenesis is mediated through EGFRs (HER1, HER2) and/or the tumor suppressor p53. In this aim we propose to determine if MUC13 physically interacts with EGFRs and/or p53 and influences expression of these proteins. 3) Develop novel methods for targeted repression of MUC13 expression in pancreatic tumors and targeted inhibition of pancreatic cancer cell growth. In this aim we will generate PLGA nanoparticle formulations of MUC13 siRNA and ormeloxifene (an anti- cancer drug), coupled with anti-MUC13 MAbs for their sustained and targeted delivery specifically in pancreatic tumors. Taken together, this information will provide important insights for developing novel therapeutic strategies for pancreatic cancer.

Public Health Relevance

With a very low survival rate, pancreatic cancer is one the most lethal malignancies, primarily due to the lack of early diagnostic markers and limited information regarding the molecular mechanisms surrounding pancreatic cancer. Understanding of the molecular mechanisms of pancreatic cancer progression and the identification of early diagnostic markers may significantly reduce the deaths caused by pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA142736-01A1
Application #
7984891
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Fu, Yali
Project Start
2010-07-01
Project End
2014-04-30
Budget Start
2010-07-01
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$329,906
Indirect Cost
Name
Sanford Research/Usd
Department
Type
DUNS #
050113252
City
Sioux Falls
State
SD
Country
United States
Zip Code
57104
Stiles, Zachary E; Khan, Sheema; Patton, Kurt T et al. (2018) Transmembrane mucin MUC13 distinguishes intraductal papillary mucinous neoplasms from non-mucinous cysts and is associated with high-risk lesions. HPB (Oxford) :
Kumari, Sonam; Khan, Sheema; Gupta, Subash C et al. (2018) MUC13 contributes to rewiring of glucose metabolism in pancreatic cancer. Oncogenesis 7:19
Ganju, Aditya; Chauhan, Subhash C; Hafeez, Bilal Bin et al. (2018) Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1. Br J Cancer 118:587-599
Khan, Sheema; Zafar, Nadeem; Khan, Shabia S et al. (2018) Clinical significance of MUC13 in pancreatic ductal adenocarcinoma. HPB (Oxford) 20:563-572
Hafeez, Bilal Bin; Ganju, Aditya; Sikander, Mohammed et al. (2017) Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic ?-catenin Signaling and EMT Progression. Mol Cancer Ther 16:2267-2280
Setua, Saini; Khan, Sheema; Yallapu, Murali M et al. (2017) Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. J Gastrointest Surg 21:94-105
Khan, S; Sikander, M; Ebeling, M C et al. (2017) MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene 36:491-500
Ganju, Aditya; Khan, Sheema; Hafeez, Bilal B et al. (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22:424-432
Setua, Saini; Khan, Sheema; Doxtater, Kyle et al. (2017) miR-145: Revival of a Dragon in Pancreatic Cancer. J Nat Sci 3:
Zaman, Mohd S; Chauhan, Neeraj; Yallapu, Murali M et al. (2016) Curcumin Nanoformulation for Cervical Cancer Treatment. Sci Rep 6:20051

Showing the most recent 10 out of 37 publications