Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL) diagnosed in the United States, accounting for over 20,000 new cases annually. DLBCL is an aggressive tumor and, despite a high response rate to initial therapy, approximately 40% of patients will ultimately die from their lymphoma. Treatment of DLBCL would benefit greatly from the advent of early diagnostics and new therapeutics. The emerging field of epigenomics is expected to provide such opportunities for most diseases, including DLBCL. The epigenome consists of covalent marks placed on the DNA and histone components of chromatin, which form distinct patterns to regulate gene expression. Changes in normal epigenetic patterns lead to inappropriate gene activation or silencing, which has been linked to numerous pathologies. For example, cancer cells silence tumor suppressor genes by revising the pattern of chromatin modifications near transcriptional promoters. In contrast to the immutability of disease-causing genetic lesions, epigenetic modifications are reversible, offering the possibility of new therapeutic modalities. Despite recent progress, the vast majority of epigenetic changes that characterize human disease, including DLBCL, and their underlying mechanisms remain unknown. We hypothesize that that the epigenome of DLBCL tumors from different patients will harbor common signatures that can be used as reporters for the disease and provide insights into mechanisms of gene regulation that promote lymphomagenesis. A subset of these signatures likely corresponds to new control elements that coordinate the aberrant expression of gene cohorts in DLBCL tumors (Intergenic Tumor-specific Control Hubs;ITCHs). We now propose a transformational research plan relying on established collaborations between basic and clinical scientists to (i) compare the epigenomes of primary DLBCL tumors with matched circulating B cells from each patient, (ii) identify ITCHs that govern the inappropriate expression of certain DLBCL gene cohorts, and (iii) innovate a therapeutic approach called Focused Epigenetic Therapy of Control Hubs (FETCH), in which ITCHs are specifically targeted for reversal of their abnormal epigenetic landscape with consequential restoration of normal expression at their gene cohorts. Together, these studies will not only provide a foundational dataset for gauging the feasibility of epigenomic approaches to NHL and other cancers, but will also guide future efforts to develop precision epigenetic therapies for reversing aberrant gene expression patterns that characterize a wide range of human diseases.

Public Health Relevance

The packaging of DNA in the nucleus is a key determinant of gene function;changes in these epigenetic programs are likely to be at the heart of many diseases. We propose studies to characterize the epigenome of lymphocytes in patients suffering from a common form of non-Hodgkin Lymphoma, with the goal of establishing tumor-specific epigenetic signatures. The signatures will then be targeted for a novel therapy in which abnormal epigenetic patterns are reversed specifically at regions in the genome that control the inappropriate expression of lymphoma genes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA156690-03
Application #
8310263
Study Section
Special Emphasis Panel (ZRG1-BCMB-A (51))
Program Officer
Okano, Paul
Project Start
2010-09-29
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$635,460
Indirect Cost
$217,394
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Huang, Yue; Koues, Olivia I; Zhao, Jiang-Yang et al. (2017) cis-Regulatory Circuits Regulating NEK6 Kinase Overexpression in Transformed B Cells Are Super-Enhancer Independent. Cell Rep 18:2918-2931
Luo, Hong; Schmidt, Jennifer A; Lee, Yi-Shan et al. (2017) Targeted epigenetic repression of a lymphoma oncogene by sequence-specific histone modifiers induces apoptosis in DLBCL. Leuk Lymphoma 58:445-456
Raju, Saravanan; Kretzmer, Lena Z; Koues, Olivia I et al. (2016) NKG2D-NKG2D Ligand Interaction Inhibits the Outgrowth of Naturally Arising Low-Grade B Cell Lymphoma In Vivo. J Immunol 196:4805-13
Gu, Junchen; Stevens, Michael; Xing, Xiaoyun et al. (2016) Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome. G3 (Bethesda) 6:973-86
Koues, Olivia I; Kowalewski, Rodney A; Chang, Li-Wei et al. (2015) Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma. Immunity 42:186-98
Koues, Olivia I; Oltz, Eugene M; Payton, Jacqueline E (2015) Short-Circuiting Gene Regulatory Networks: Origins of B Cell Lymphoma. Trends Genet 31:720-731
Predeus, Alexander V; Gopalakrishnan, Suhasni; Huang, Yue et al. (2014) Targeted chromatin profiling reveals novel enhancers in Ig H and Ig L chain Loci. J Immunol 192:1064-70
Gopalakrishnan, Suhasni; Majumder, Kinjal; Predeus, Alexander et al. (2013) Unifying model for molecular determinants of the preselection V? repertoire. Proc Natl Acad Sci U S A 110:E3206-15
Guo, Changying; Gerasimova, Tatiana; Hao, Haiping et al. (2011) Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus. Cell 147:332-43