The objective of this work is to develop novel anti-cancer drugs that target, primarily, isoprenoid biosynthesis. The work builds on the discovery in several recent clinical trials that the bisphosphonate drug zoledronate has unexpected positive effects as an adjuvant (in combination therapy with aromatase inhibitors) in breast cancer, reducing the re-occurrence of disease (at any site) by 36%, in addition to increasing the survival of prostate cancer patients. Likely targets are direct tumor cell killing, inhibition of invasiveness and angiogenesis, and """"""""phenotype switching"""""""" (34 T cell activation and conversion of tumor associated macrophages (TAMs) from a pro-tumor, M2, to an anti-tumor, M1, phenotype). In the work proposed here we will test the hypothesis that a new class of bisphosphonates called """"""""lipophilic bisphosphonates"""""""" (LBPs) will be far more effective than zoledronate in tumor cell killing and in 34 T cell activation and that they will also switch macrophages from M2 ->M1, resulting in new leads for cancer chemotherapy and immunotherapy. We also propose to test the hypothesis that by using a combination of high-field solid-state NMR and calorimetry to develop molecular models for bone-ligand interactions, we can very effectively design other anti-cancer drugs that bind to bone, realizing the long sought after goal of """"""""magic bullets"""""""" for bone diseases.
In Aim 1, we will develop compounds that inhibit two prenyl synthase enzymes: farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), that are involved in protein (e.g. Ras, Rho, Rap1A) prenylation, of importance in cell signaling and cell survival pathways.
In Aim 2, we will carry out cell-based and in vivo testing of the compounds made in Aim 1.
In Aim 3, we will develop the concept of """"""""bone-tags"""""""" or """"""""magic bullets"""""""", compounds which enable the delivery of drugs to bone. If successful, we will thus develop completely new approaches to cancer chemotherapy and immunotherapy that, in the future, will have a major impact in the clinic.

Public Health Relevance

The project is aimed at developing new leads for treating cancer. Focus is on the development of a new generation of drugs;lipophilic bisphosphonates that kill tumor cells, as well as activate 34 T cells and macrophages, to kill tumor cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA158191-03
Application #
8444316
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Misra, Raj N
Project Start
2011-06-01
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
3
Fiscal Year
2013
Total Cost
$297,133
Indirect Cost
$102,083
Name
University of Illinois Urbana-Champaign
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Malwal, Satish R; O'Dowd, Bing; Feng, Xinxin et al. (2018) Bisphosphonate-Generated ATP-Analogs Inhibit Cell Signaling Pathways. J Am Chem Soc 140:7568-7578
Malwal, Satish R; Gao, Jian; Hu, Xiangying et al. (2018) Catalytic Role of Conserved Asparagine, Glutamine, Serine, and Tyrosine Residues in Isoprenoid Biosynthesis Enzymes. ACS Catal 8:4299-4312
Boulmier, Amandine; Feng, Xinxin; Oms, Olivier et al. (2017) Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results. Inorg Chem 56:7558-7565
Mohammad, Haroon; Younis, Waleed; Chen, Lu et al. (2017) Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. J Med Chem 60:2425-2438
Schwalen, Christopher J; Feng, Xinxin; Liu, Weidong et al. (2017) Head-to-Head Prenyl Synthases in Pathogenic Bacteria. Chembiochem 18:985-991
Liu, Meixia; Chen, Chun-Chi; Chen, Lu et al. (2016) Structure and Function of a ""Head-to-Middle"" Prenyltransferase: Lavandulyl Diphosphate Synthase. Angew Chem Int Ed Engl 55:4721-4
Yang, Yunyun; Ko, Tzu-Ping; Chen, Chun-Chi et al. (2016) Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets. ACS Chem Biol 11:1362-71
Desai, Janish; Wang Dr, Yang; Wang Dr, Ke et al. (2016) Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth. ChemMedChem 11:2205-2215
Wang, Yang; Desai, Janish; Zhang, Yonghui et al. (2016) Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase. ChemMedChem 11:2311-2319
Desai, Janish; Liu, Yi-Liang; Wei, Hongli et al. (2016) Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase. ChemMedChem 11:1915-23

Showing the most recent 10 out of 37 publications